
www.manaraa.com

Automated Memory Analysis:

Improving the Design and Implementation of

Iterative Algorithms

by

John M. Dennis

BA, University of Colorado, 1993

MS, University of Colorado, 1998

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2005



www.manaraa.com

This thesis entitled:
Automated Memory Analysis:

Improving the Design and Implementation of Iterative Algorithms
written by John M. Dennis

has been approved for the Department of Computer Science

Elizabeth R. Jessup

Professor William M. Waite

Professor Xiao-Chuan Cai

Dr. Steven J. Thomas

Professor Henry M. Tufo

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.



www.manaraa.com

iii

Dennis, John M. (Ph.D., Computer Science)

Automated Memory Analysis:

Improving the Design and Implementation of Iterative Algorithms

Thesis directed by Professor Elizabeth R. Jessup

Historically, iterative solvers have been designed to achieve the best numerical

accuracy for a given number of floating-point operations. However, this approach ig-

nores the cost of memory access, which has not seen nearly as rapid of an improvement

as floating-point costs. To reduce the time to solution, we need to address both the

numerical efficiency and memory efficiency of an iterative algorithm. We contend that

it is possible to evaluate the memory efficiency of an iterative algorithm during the

design process. There are two techniques for a priori evaluation of memory efficiency:

manual and automated memory analysis. Manual memory analysis, which involves

the derivation of analytical expression for data movement, is a laborious, error-prone

process that is too complex to perform on a regular basis. Automated memory analy-

sis is possible through the use of the Sparse Linear Algebra Memory Model (SLAMM)

language processor. The SLAMM language processor accepts as input Matlab code and

outputs a suitably transformed Matlab source that contains blocks of code that predict

data movement. We demonstrate that the SLAMM language processor accurately pre-

dicts the amount of data loaded from the memory heirarchy to the L1 cache (MbytesL1)

to within 20% error for numerous small kernels and complete iterative algorithms on

three different compute platforms. SLAMM reduces the time to perform memory anal-

ysis from as long as several days to 20 minutes. SLAMM provides the ability to rapidly

evaluate the memory efficiency of particular design choices during the design phase of

an iterative algorithm. Additionally, we demonstrate how SLAMM is used to improve

the memory efficiency of a pre-existing solver.



www.manaraa.com

Dedication

To my lovely and patient wife, without whom I night never have finished.



www.manaraa.com

v

Acknowledgements

I would like to acknowledge and thank the National Center for Atmospheric Re-

search for its continuing financial support and for the sabbatical necessary to complete

my studies. I also thank Professor Jessup for her support and patience over the years.

I would like to thank and acknowledge my entire thesis committee, in particular Dr.

Thomas, who initially suggested the use of a shifted algorithm, and Professor Waite,

who provided invaluable insight into techniques to address Matlab’s syntactical ambigu-

ities. Additional thanks go to Amik St-Cyr for suggesting the mass form of the Helmholz

operator and the use of right preconditioning. Finally, I would like to thank Rich Loft,

whose various forms of encouragement over the years were instrumental.



www.manaraa.com

Contents

Chapter

1 Introduction 1

2 Background 6

2.1 Computer Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Generic Iterative Solver Issues . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Memory-Efficient Programming . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Quantifying Memory Efficiency . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Multivector Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Krylov Subspace Algorithms 17

3.1 Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Multishifted Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . 20

3.3 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Block LGMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Manual Memory Analysis 29

4.1 Test Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Multivector Optimization and B-LGMRES . . . . . . . . . . . . . . . . 30

4.3 Reducing Data Movement in B-LGMRES . . . . . . . . . . . . . . . . . 37



www.manaraa.com

vii

5 Sparse Linear Algebra Memory Model Language Processor 43

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Automated Performance Prediction . . . . . . . . . . . . . . . . 44

5.1.2 Compiling Matlab Code . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Syntactical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Name Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.2 Type Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.3 Tree Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Eli Compiler Construction Suite . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Matlab-Specific Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7.1 Invisible Commas . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7.2 Transpose Operator . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7.3 Classification of Identifiers . . . . . . . . . . . . . . . . . . . . . 57

5.8 Memory Analysis Computations . . . . . . . . . . . . . . . . . . . . . . 59

5.8.1 Inclusive and Exclusive Counting . . . . . . . . . . . . . . . . . 59

5.8.2 Corrections to Identifier Counts . . . . . . . . . . . . . . . . . . 62

5.8.3 SLAMM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.8.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8.5 Memory Analysis Output . . . . . . . . . . . . . . . . . . . . . . 69

5.9 Using the SLAMM Language Processor . . . . . . . . . . . . . . . . . . 70

6 Automated Memory Analysis 73

6.1 Test Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Fundamental Linear Algebra Operations . . . . . . . . . . . . . . . . . 77



www.manaraa.com

viii

6.2.1 Vector Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.2 Dense Matrix Benchmark . . . . . . . . . . . . . . . . . . . . . . 83

6.2.3 Sparse Matrix Benchmark . . . . . . . . . . . . . . . . . . . . . 86

6.3 Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 Programming Style . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2 Accuracy for CG . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.3 Stagnation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Generalized Minimal Residual Methods . . . . . . . . . . . . . . . . . . 94

6.4.1 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 LGMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.3 B-LGMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Reducing Solver Costs in HOMME 100

7.1 HOMME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Numerical Impact of mCG Solver in HOMME . . . . . . . . . . . . . . 103

7.3 Alternative Krylov Solvers in HOMME . . . . . . . . . . . . . . . . . . . 105

7.3.1 Reducing Data Movement in the mCG Algorithm . . . . . . . . 107

7.3.2 Impact of the mCG Algorithm on Execution Time . . . . . . . . 111

7.3.3 Nonsymmetric Solvers in HOMME . . . . . . . . . . . . . . . . 113

8 Conclusions 115

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 120



www.manaraa.com

Tables

Table

2.1 Total storage requirements, and working set sizes for the non-multivector

and multivector implementations of the dot product, axpy, and matrix-

vector multiply routines. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Total storage requirements and working set sizes for both the non-multivector

(non-MV) and multivector (MV) approachs for each line of the B-LGMRES

algorithm in Figure 3.5, where s = k + 1. . . . . . . . . . . . . . . . . . 27

4.1 List of test problems together with the matrix order (n), number of nonze-

ros (nnz), preconditioner, and a description of the application area (if

known). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 A comparison of execution times in seconds for the MV and non-MV

implementations of B-LGMRES(15, 1) for 10 restart cycles. The matrix

order (n), number of nonzeros (nnz), and percentage improvement of the

MV over the non-MV implementation are also listed. . . . . . . . . . . 32

4.3 Execution times in µsec for a single call to VecStrideAXPY for the non-

MV implementation and MV implementations with loop versions A - D

in Figure 4.2. Relative improvement of version D versus non-MV is also

listed. Problems are listed in increasing order of matrix size (n). . . . . 36



www.manaraa.com

x

6.1 Description of the microprocessor compute platforms and their cache

configurations. The total size of the cache (size), length of cache line

(cline), associativity (assoc), and location of the cache (loc) is provided

(if known). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Experimentally determined memory hierarchy bandwidths for each com-

pute platform in Mbytes/sec. . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 List of test problems with the matrix order (n), number of nonzeros

(nnz), matrix density (ρ), and description of the application area (if

known). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 MbytesL1 for the vector kernel benchmarks. WSLP , calculated by the

SLAMM language processor and measured values of WSLM are in Kbytes.

80

6.5 Overall accuracy of execution time prediction for the vector benchmarks. 81

6.6 The predicted upper bound (TU ) versus measured execution time (TM )

in µsec for the vector benchmarks. . . . . . . . . . . . . . . . . . . . . 84

6.7 The predicted lower bound (TL) versus measured execution time (TM ) in

µsec for the vector benchmarks. . . . . . . . . . . . . . . . . . . . . . . 85

6.8 MbytesL1 for the MxM benchmark. WSLP , calculated by the SLAMM

language processor and the measured value for the BLAS (WSLB
M ) and

hand optimized (WSLH
M ) implementations are in Kbytes. Relative error

between predicted and measured is provided in parenthesis. . . . . . . 86

6.9 MbytesL1 for the MxV benchmark. SR and WSLP , calculated by the

SLAMM language processor, and the measured values of WSLM are in

Kbytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.10 The measured (TM ), predicted lower bound (TL), and upper bound (TU )

on execution time in µsec for the MxV benchmark. . . . . . . . . . . . 89

6.11 Code statistics for several CG algorithms written in Matlab. . . . . . . 91



www.manaraa.com

xi

6.12 Impact of various corrections to baseline memory analysis for CG al-

gorithm with the s1rmq4m1b matrix. The average of measured value

WSLM for each primary compute platform of 41.1 Mbytes is used for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.13 MbytesL1 for CG benchmark for 10 iterations. SR and WSLP , calculated

by SLAMM, and measured values of WSLM are in Mbytes. . . . . . . 93

6.14 Predicted increase in MbytesL1 for stagnation test in Pcg version of CG. 94

6.15 Code statistics of a family of GMRES algorithms written in Matlab. For

the GMRES(30) algorithm, the type of Arnoldi process are indicated as

either modified Gram-Schmidt (MGS) or Householder (House). . . . . 95

6.16 MbytesL1 for one restart cycle of the GMRES(30) benchmark. SR and

WSLP , calculated by the SLAMM language processor, and measured

WSLM are in Mbytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.17 Predicted increase in MbytesL1 for Gram-Schmidt versus Householder

based GMRES(30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.18 MbytesL1 for one restart cycle of the LGMRES(29,1) benchmark. SR and

WSLP , calculated by the SLAMM language processork, and measured

WSLM are in Mbytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.19 Predicted decrease in MbytesL1 for a Givens rotation versus a QR fac-

torization for residual estimation in the LGMRES(29,1) algorithm. . . 98

6.20 MbytesL1 for one restart cycle of the B-LGMRES(15,1) benchmark. SR

and WSLP , calculated by the SLAMM language processor, and measured

values of WSLM are in Mbytes. . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Predicted versus measured MbytesL1 for three different versions of the

mCG algorithm in HOMME for 10 iterations for Ne = 3, Np = 6, and

nlev = 20 on Pwr4. Values for WSLP and WSLM are in Mbytes. . . . 107



www.manaraa.com

xii

7.2 Measured MbytesL1 (WSLM ) in Mbytes and FlopsM in Mflops for 10

iterations of CG and mCG algorithms at the Ne = 5, Np = 8, and

nlev = 20 resolution on Pwr4. . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Average execution time per timestep in µseconds for 120 timesteps for

HOMME at Ne = 5, Np = 8, and nlev = 20 on Pwr4. . . . . . . . . . . 113

7.4 Predicted MbytesL1 for the several Krylov algorithm and preconditioner

combinations in HOMME for 10 iteration at resolution Ne = 3, Np = 6,

and nlev = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



www.manaraa.com

Figures

Figure

2.1 Code to perform a matrix-vector multiply for a coefficient matrix A stored

in CSR format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Conjugate Gradient (CG) algorithm. . . . . . . . . . . . . . . . . . . . . 20

3.2 Merged Inner-Product Conjugate Gradient algorithm. . . . . . . . . . . 21

3.3 Preconditioned Multishifted Conjugate Gradient (mCG) algorithm. . . 23

3.4 GMRES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 B-LGMRES(m, k) for restart cycle i. . . . . . . . . . . . . . . . . . . . . 26

4.1 Percentage of time for each section of code of the MV implementation of

B-LGMRES(15,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Code to perform a multivector AXPY operation. Successive versions add

additional optimization techniques. . . . . . . . . . . . . . . . . . . . . 35

4.3 A comparison of execution time for the MatMult and MGS sections with

the non-MV implementation of B-LGMRES(15,1) versus the MV imple-

mentation for 10 restart cycles. . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 A comparison of data movement from main memory to L2 cache in

the MatMult and MGS sections for the non-MV implementation of B-

LGMRES(15,1) versus the MV implementation for 10 restart cycles. . . 39



www.manaraa.com

xiv

4.5 A comparison of experimental and predicted data movement from main

memory to L2 cache in the MatMult section for the non-MV implemen-

tation of B-LGMRES(15,1) versus the MV implementation for 10 restart

cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 A comparison of experimental and predicted data movement from L2

cache to L1 cache in the MatMult section for the non-MV implementation

of B-LGMRES(15,1) versus the MV implementation for 10 restart cycles. 41

4.7 A comparison of experimental and predicted data movement from L2

cache to L1 cache in the MGS section for the non-MV implementation of

B-LGMRES(15,1) versus the MV implementation for 10 restart cycles. 42

4.8 The upper panel is a comparison of data movement from L2 to L1 cache

in the MatMult and MGS sections for the non-MV implementation of B-

LGMRES(15,1) versus the MV implementation for 10 restart cycles. The

lower panel compares data movement from main memory to L2 cache. 42

5.1 C code with a number of coding errors. . . . . . . . . . . . . . . . . . . 46

5.2 A simplified concrete syntax for variable declaration in C in both speci-

fication and tree form. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Matlab code that illustrates the use of invisible commas . . . . . . . . . 54

5.4 Matlab code that illustrates the use of both transpose operators and

string constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Matlab code that illustrates the multiple uses of brackets. . . . . . . . 57

5.6 Matlab code that illustrates multiple scopes. . . . . . . . . . . . . . . . 61

5.7 Matlab code that illustrates the need for corrections to the base identifier

counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.8 A diagram of SLAMM output using the Matlab code in Figure 5.6 as

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



www.manaraa.com

xv

5.9 The SLAMM generated exclusive memory analysis code block for scope

B2 of Figure 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.10 The SLAMM transformed Matlab code for the expression t = sin(r) +

cos(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.11 The output of a call to the SlmPrtAnalysis function. . . . . . . . . . . 70

7.1 The cubed-sphere with continental outline for Ne = 8 . . . . . . . . . . 102

7.2 The norm of the divergence (‖ ∇ ‖2) at the surface at day 12 for HOMME

at resolution Ne = 5, Np = 8, and nlev = 20 for the both CG and mCG

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 The surface vorticity at day 12 for HOMME at resolution Ne = 5, Np = 8,

and nlev = 20 with the shifted form of the Helmholtz problem using the

mCG solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 The Precon section of the multishifted conjugate gradient in HOMME. 110



www.manaraa.com

Chapter 1

Introduction

Many important scientific and engineering computational problems involve the

solution of a set of partial differential equations (PDEs). For example, PDEs are used to

simulate airflow over an airfoil [4], blood flow through a heart [108], and weather patterns

[73]. Frequently, the cores of these applications involve solving a large, sparse system

of linear equations. The solution of the linear system by an iterative linear solver is

often the single most costly component of the application [42, 94]. Historically, iterative

solvers have been designed to achieve the best numerical accuracy for a given number

of floating-point operations [79, 95, 90]. This approach is based on the assumption

that the time to perform floating-point operations dominates the overall cost of the

iterative solver. This assumption is no longer true, because while advances in computer

architecture have significantly reduced the cost of a floating-point operation, the memory

access cost has not seen nearly as rapid an improvement [82]. The time to solution is

no longer strictly a function of floating-point operations, but rather a combination of

the costs of floating-point arithmetic and memory access [51].

We should not focus solely on reducing the number of iterations required to con-

verge, but also on reducing the time to solution. For example, during the implementation

of a conjugate gradient solver in a prototype atmospheric model, it was observed that

the use of a simple and memory-efficient preconditioner greatly reduced the time to so-

lution versus a numerically efficient but memory-intensive alternative [66]. However, it



www.manaraa.com

2

should be emphasized that memory efficiency does not not always imply a reduction in

numerical efficiency. It was demonstrated in [9] that a block variant of GMRES achieves

improved memory efficiency without loss of numerical efficiency.

The creation of new algorithms that demonstrate both numerical and memory

efficiency [102, 22, 8] is a non-trivial problem that has not been addressed extensively

or in a systematic fashion. Sparse linear solvers are designed in either an a priori or

an a posteriori manner. The a priori design approach integrates memory efficiency into

the algorithm from the start and requires extensive knowledge of computer architecture

and software engineering. The implementation is frequently a time-consuming and error-

prone process, and the memory efficiency of the resulting algorithm is often unknown

until it is fully implemented in a compiled language like C/C++ or FORTRAN. A

memory-efficient algorithm that is poorly implemented can be mistakenly discarded.

The all-too-common a posteriori approach is to ignore memory efficiency until

the algorithm is fully implemented in a compiled language. Modifications for memory

efficiency are therefore an afterthought, not an integral component of the design process.

The a posteriori approach places unnecessary limitations on the variety and efficiency

of possible solvers. Both methodologies are unnecessarily limiting. A design technique

is needed that simplifies the creation of memory-efficient sparse linear solvers.

We therefore contend that evaluation of the impact of an iterative algorithm on

the memory hierarchy must be an integral component of the design process. Memory

analysis concentrates on determining the required data movement for each component

of an iterative algorithm. For memory analysis to improve the memory efficiency of

iterative solvers, we need the ability to evaluate the numerical and memory efficiency

of an algorithm, during its design phase. We address this need through the develop-

ment of the Sparse Linear Algebra Memory Model (SLAMM) language processor to

automate memory analysis. The SLAMM language processor provides the ability to

rapidly evaluate the memory efficiency of particular design choices during the design



www.manaraa.com

3

phase of an iterative algorithm. Further, SLAMM can be used to improve the mem-

ory efficiency of a pre-existing solver. The SLAMM language processor simplifies the

creation of memory-efficient sparse linear solvers.

In Chapter 2, we review the background of memory-efficient programming and

describe the multivector optimization, a technique for improving memory efficiency.

In Chapter 3, we describe several Krylov subspace algorithms, whose data movement

is analyzed using both manual and automated techniques in subsequent chapters. In

Section 3.1, we describe the conjugate gradient (CG) algorithm. In Section 3.2, we

describe a new variant of CG, the multishifted conjugate gradient algorithm (mCG)

which is based on the QD transform [38]. In Section 3.3, we describe the generalized

minimum residual algorithm (GMRES) [92]. Finally, in Section 3.4, we describe a block

variant of the GMRES algorithm (B-LGMRES).

In Chapter 4 we describe a manual memory analysis of the B-LGMRES algo-

rithm implemented as part of the Portable Extensible Toolkit for Scientific Computing

(PETSc) [11]. We evaluate the B-LGMRES algorithm with and without the multivec-

tor optimization. We demonstrate that it is possible to predict the impact of different

implementation choices on performance using a priori information derived from manual

memory analysis.

Manual memory analysis is a laborious and error-prone process that is too com-

plex to perform on a regular basis. In Chapter 5, we therefore describe the development

of the SLAMM language processor. The SLAMM language processor uses compiler

techniques to analyze input code and generate transformed code that predicts data

movement. The transformed code is subsequently executed by the Matlab interpreter

to complete the automated memory analysis process. In Section 5.1, we provide back-

ground on related efforts for automated performance prediction and compiling Matlab

code. Next we describe the main computational tasks of a compiler, which are lexical

analysis in Section 5.2, syntactical analysis in Section 5.3, semantic analysis in Section



www.manaraa.com

4

5.4, and transformation in Section 5.5. In Section 5.6, we describe the Eli compiler

construction suite [50], which is used to develop the SLAMM language processor. In

Section 5.7, we describe several of Matlab’s syntactical peculiarities that complicate the

development of the language processor. In Section 5.8, we describe the memory analy-

sis computations. Finally, in Section 5.9, we provide an operational description of the

SLAMM language processor.

In Chapter 6, we evaluate the ability of the SLAMM language processor to accu-

rately predict the amount of data loaded from the memory hierarchy to the L1 cache

(MbytesL1) for a collection of benchmarks. In Section 6.1, we describe the test config-

urations and methodology. In Section 6.2, we evaluate a series of linear algebra kernels.

In Sections 6.3 and 6.4, we examine several conjugate gradient and GMRES algorithms,

respectively. We find that SLAMM accurately predicts MbytesL1 for nearly all bench-

marks on three different compute platforms to within 20% error. We demonstrate in

Chapter 7 how a prediction within 20% error is sufficient to allow for easy identification

of sections of code with excessive data movement.

In Chapter 7, we demonstrate how SLAMM is used as a valuable design tool to

improve the memory efficiency of iterative algorithms. In particular, we use SLAMM

to evaluate data movement in the iterative solver of the High Order Method Model

Environment (HOMME). HOMME, a scalable prototype atmospheric model [104], is

described in Section 7.1. In Section 7.2, we verify that an mCG-based HOMME suc-

cessfully reproduces a standard atmospheric test problem. In Section 7.3, we examine

the performance impact of alternative Krylov solvers in HOMME. In Section 7.3.1 we

demonstrate how SLAMM is used to performance tune the existing mCG implementa-

tion in HOMME. In Section 7.3.2 we compare the mCG and CG algorithm in HOMME.

The mCG algorithm demonstrates the critical impact memory access costs have on the

time to solution. In Section 7.3.3 use SLAMM to predict the data movement required

by several nonsymmetric solvers in the context of HOMME. The results of Chapter 6



www.manaraa.com

5

and 7 demonstrate that SLAMM can be used as an a priori design tool to evaluate the

impact on memory efficiency during an algorithm’s design phase. Finally, in Chapter 8,

we summarize our work and describe several avenues for further investigation.



www.manaraa.com

Chapter 2

Background

We begin this chapter by reviewing basic computer architecture concepts and the

existing work on memory-efficient programming. In Section 2.1, we review the memory

hierarchy followed by Section 2.2, in which we describe the fundamental memory effi-

ciency issues associated with iterative solvers. In Section 2.3, we describe existing work

and techniques to improve the memory efficiency of existing linear algebra algorithms.

In Section 2.4, we derive analytical expressions, which form the basis of memory analy-

sis, to describe data movement. Finally, we use the analytical expressions from Section

2.4 to evaluate the multivector optimization in Section 2.5.

2.1 Computer Hardware

Modern microprocessor computer systems are composed of a central processing

unit (CPU), a memory hierarchy, and a collection of peripherals. Because iterative

solvers typically operate on data in the “core” or main memory of a system, we ignore

the impact of peripherals and disk drives for the purposes of this work. The memory

hierarchy therefore consists of registers, caches, and main memory. The CPU loads

operands from the memory hierarchy into registers, performs computations, and stores

the results back to memory. Moving outward from the CPU toward main memory, each

level of the memory hierarchy has both increased capacity and increased access time.

The fastest pieces of the memory hierarchy are the registers, which are accessible



www.manaraa.com

7

in a single CPU clock cycle. However, register space is extremely limited and may only

provide storage for 32 to 128 data values. The Level 1 cache (L1) is significantly larger,

typically 16 to 64 Kbytes in size with an access time of 1 to 3 cycles. The Level 2 cache

(L2) varies from 512 Kbytes to 8 Mbytes in size and has access times of 10 to 30 cycles.

Level 3 caches (L3) are becoming increasingly common and vary from 2 to 32 Mbytes

in size and have access times of 20 to 150 CPU cycles. Finally, main memory typically

varies from 256 Mbytes to 16 Gbytes and is accessed in 40 to 200 CPU cycles.

Data is moved through the memory hierarchy in units of cache lines. Cache lines

vary from 16 to 128 bytes in size and may be different for each level of cache. The links,

or buses, between the different caches each have an associated width and clock rate. For

example, a bus between an L1 and L2 cache that operates at 400 Mhz and has width

of 64 bits or 8 bytes can transfer data at a maximum rate of 3200 Mbytes/sec or 3.2

Gbytes/sec. Section 6.1 contains a detailed description of the experimental compute

platforms used for this paper.

2.2 Generic Iterative Solver Issues

We next describe the algorithmic issues associated with iterative solvers. Iterative

solvers find an approximate solution x for the equation

Ax = b,

where A ∈ R
n×n is a sparse coefficient matrix and x, b ∈ R

n are dense vectors. The

matrix A is stored in a sparse format due to memory limitations. All iterative solvers

perform two fundamental types of operations. The first type is the calculation of matrix-

vector products and involves accessing the sparse coefficient matrix A. The second type

of calculation involves dense vector operations. Because the issues associated with

dense linear algebra are well known [33, 31, 18, 63], we concentrate on the first type

of calculation. Improving the memory characteristics of compressed sparse row (CSR),



www.manaraa.com

8

which is the basic storage format for sparse matrices, has been the focus of a large body

of research [1, 62, 75]. Figure 2.1 illustrates the code necessary to calculate y = Ax,

where x and y are vectors and A is a matrix in CSR format. The variable Aval contains

the matrix nonzero values, ia is the column pointer, and ja is the row pointer. The

number of nonzeros is nnz and the matrix order is n. The array x is indexed using

indirect addressing, while y is indexed using direct addressing. The use of indirect

addressing significantly increases access time. Attempts to eliminate it or reduce its

impact are the fundamental motivation for all research into improving sparse storage

formats.

int nnz; /* Number of nonzeros */

int n; /* Matrix order */

double Aval[nnz] /* Nonzero values */

int ia[n+1]; /* Column pointers */

int ja[nnz]; /* Row pointers */

double x[n],y[n]; /* Vectors */

for (i=0; i<n; i++) {

is = ia[i];

ie = ia[i+1];

tmp = 0.0;

for (j=is; j< ie; j++) {

tmp = tmp + Aval[j]*x[ja[j]];

}

y[i]=tmp;

}

Figure 2.1: Code to perform a matrix-vector multiply for a coefficient matrix A stored
in CSR format.

2.3 Memory-Efficient Programming

Memory-efficient programming attempts to minimize the impact of the memory

hierarchy on the execution time of a piece of code. Memory efficiency is achieved by

increasing a code’s spatial or temporal memory reference locality. A code has

spatial locality if successive memory references tend to access adjacent words of memory.



www.manaraa.com

9

A code has temporal locality if memory references that are close in time repeatedly

access the same pieces of data. To understand the distinction, consider the calculation

of a dot product of two vectors with a stride-one access pattern. The dot product

calculation uses direct addressing, so successive words of each vector are accessed in

order, generating a memory access pattern with good spatial locality. The dot product

calculation does not itself have good temporal locality because the operand vectors are

accessed only once. However, if the dot product calculation were used as part of a

matrix-matrix multiply, the code would have both good spatial and temporal locality,

because the vectors would be accessed repeatedly. A result of the dot product’s good

spatial locality is that it uses cache lines efficiently, because all or most of the words in

the cache line are used by the CPU as operands. Conversely, a code employing indirect

addressing may exhibit poor spatial locality. Poor spatial locality results in inefficient

use of cache lines and increases the required memory bandwidth. However, it is possible

to increase the temporal locality of any code by grouping computations on the same

operands together.

Increasing memory reference locality reduces an algorithm’s dependence on mem-

ory latency, bandwidth, or both. Memory latency refers to the time between when a

CPU issues a load for an operand and when the operand arrives in the registers. Latency

depends on the location of the operand in the memory hierarchy. The load latency is

considerably longer for operands in main memory than for those located in the L1 cache.

Prefetching operands is a general technique for addressing load latency [2, 106, 61, 76].

Prefetching involves the loading of operands into the L1 cache before they are needed

by the CPU and is implemented in either software or hardware. Both types of prefetch-

ing require an accurate prediction of the load access time. Furthermore, care must be

taken to prevent the prefetched load from removing other pieces of data currently in

use, unintentionally resulting in increased memory traffic.

Existing data structure techniques also reduce the impact of memory latency for



www.manaraa.com

10

the two memory loads necessary for indirect addressing. The first load determines the

address of the operand, while the second loads the actual operand. The blocked AIJ

approach reduces the amount of indirect addressing required by changing the underlying

data structures of the coefficient matrix A to be a collection of small dense blocks.

Indirect addressing is therefore only needed to locate the first element of the block. The

blocked AIJ approach, which frequently requires the matrix to be reordered to locate

small dense blocks, has been successfully applied by [106, 56, 83, 114] to improve spatial

memory reference locality. Its effectiveness depends on the nonzero structure of the

matrix. A related technique involves locating identical nonzero structures in successive

rows (inodes) of the matrix [11]. While this approach does not address the spatial

locality of the code, it does increase temporal locality.

In addition to memory latency, bandwidth limitations also impact an algorithm’s

performance. Memory bandwidth is the rate at which data is moved through the mem-

ory hierarchy. We estimate the impact of memory bandwidth on a particular algorithm

by comparing the total storage requirement of an algorithm and its working set size to

the size of the cache. The total storage requirement is the total size in bytes of all vari-

ables required by an algorithm. The working set size is the size in bytes of all variables

loaded from the memory hierarchy during a particular section of the algorithm. Different

implementations of the same algorithm might have the same total storage requirement

but different working set sizes. The impact of the memory hierarchy on an algorithm’s

performance is minimized when the total storage requirement or working set size are

smaller than the cache size. A technique that matches the working set size to cache

size is loop blocking [47, 18, 63]. Loop blocking breaks up large code blocks or loops

into smaller blocks to improve data reuse. Loop blocking is performed by the optimized

Level 2 and 3 BLAS routines [33, 31]. The ATLAS project [116] demonstrated that

the optimal size of blocks can be determined experimentally. Loop blocking primarily

addresses the spatial locality of the code. Finally, the multivector optimization, which



www.manaraa.com

11

increases both spatial and temporal locality, allows the calculation of four matrix-vector

products in only 50% more time than needed to perform a single matrix-vector product

[51, 52]. We examine the multivector optimization in detail in Section 2.5.

2.4 Quantifying Memory Efficiency

The impact that the memory hierarchy has on sparse linear algebra was first

analyzed by Temam and Jalby [102]. Their work takes a probabilistic approach to

model the impact of cache and the nonzero pattern of a general sparse matrix-vector

multiply. Unlike Temam and Jalby, we do not concentrate on the form of the nonzero

pattern, but rather on the amount of data loaded through the memory hierarchy. We

approximate data movement based on the total storage requirement (SR), amount of

data accessed size (AS) and the working set load size (WSL) or the amount of data

loaded from the memory hierarchy for an algorithm. We calculate the total storage

requirement by summing the size in bytes for all variables required by a section of an

algorithm. Consider the matrix-vector multiply algorithm in Figure 2.1. The total

storage requirement for the matrix-vector multiply is

SR ≡ sizeof(A) + sizeof(x) + sizeof(y),

where sizeof() is a function that returns the size of its argument in bytes. The matrix A

in CSR format requires an array of double precision floating-point values of length nnz,

an integer array ia of length nnz, and an integer array ja of length n. The arrays ia

and ja represent the column and row pointers from Figure 2.1, respectively. Therefore,

the size of the matrix A is

sizeof(A) = sizeof(double) · nnz + sizeof(int) · (n + nnz), (2.1)

where double is a double precision value and int is an integer value. Because the size

in bytes of the vectors x, y from Figure 2.1 are sizeof(double) · n, the total storage



www.manaraa.com

12

requirement for the code in Figure 2.1 is

SR ≡ (nnz + 2n)Ld + (nnz + n)Li,

where Ld = sizeof(double) and Li = sizeof(int).

We now derive the expressions for AS and WSL for the calculation of a single

element of the vector y using the matrix-vector multiply routine from Figure 2.1. The

calculation of the ith value of y or y(i) requires two values of ia, values of Aval, ja, x,

and y(i). All variables except y(i) must be loaded from the memory hierarchy; therefore,

it is easy to determine AS and WSL. The AS and WSL to calculate y(i) are

ASy(i) = (2 · rowleni + 2)Ld + (rowleni + 2)Li

WSLy(i) = (2 · rowleni + 1)Ld + (rowleni + 2)Li,

where rowleni = (ia(i+1)−ia(i)+1). While the difference between the values for ASy(i)

and WSLy(i) is minor in this case, it is not always so. For example, when the result

of the computation is similar in size to the operands, AS and WSL are significantly

different. Because the goal of memory analysis is to accurately predict required data

movement, and the AS value includes the size of variables that also must be stored to

the memory hierarchy, we use WSL for comparison with measured values hereafter.

2.5 Multivector Optimization

The multivector optimization is a technique that involves the use of special data

structures to locate corresponding members of different vectors next to each other in

memory. This arrangement is described in [51, 8] as an interlaced storage format.

Consider a set of s vectors V = [v1, v2, . . . , vs], where vi ∈ R
n×1. Let vi(j) be the jth

element of vector vi. Use of the interlaced storage format places the jth elements of vi ∈

V : i = 1, s next to each other in memory. The interlaced storage format contrasts with

the non-interlaced or standard approach, which places successive elements of a vector



www.manaraa.com

13

vi next to each other. For example, the first r elements where r < s of a multivector V

are v1(1), v2(1), . . . , vr(1) versus v1(1), v1(2), . . . , v1(r) for the standard approach. The

rearrangement of data necessary for the interlaced storage format directly increases

spatial locality.

Use of the interlaced storage format requires rewriting all fundamental linear

algebra operations required by an iterative solver. For example, an iterative solver for

AX = B, where X and B are multivectors, requires rewriting the matrix-multivector

multiply and other common linear algebra operations such as dot product, axpy, and

others. The advantage of this data structure arrangement is that it increases both

spatial and temporal locality, resulting in greater data reuse. For example, consider the

calculation of the dot product W = XT V of two multivectors X,V ∈ R
n×s and W ∈

R
s×s, where X and V each contain constituent vectors xi, vj ∈ R

n×1, i = 1 : s, j = 1 : s.

The storage requirement of the dot product operation is

SR ≡ sizeof(X) + sizeof(V ) + sizeof(W ) = (2n + s)sLd.

Let multiDot(X,V ) be the multivector dot product, while Dot(xi, vj) is the standard

dot product. We consider the standard approach first. The standard approach involves

forming the dot product Dot(xi, vj) for vectors xi, vj , i = 1 : s, j = 1 : s with s2 calls to

DOT(). Each call to DOT() requires accessing 2 · n data values. The WSL of a single

call to the DOT() operation is

WSLDOT () ≡ 2nLd.

Therefore, the calculation of DOT (xi, vj), i = 1 : s, j = 1 : s has a working set size of

WSLDOT (xi,vj) ≡ 2ns2Ld.

A single call to the multiDot(X,V ) routine calculates all s2 dot products of the con-

stituent vectors xi, vj , i = 1 : s, j = 1 : s simultaneously. The multivector dot product



www.manaraa.com

14

therefore accesses each xi, vj once because of the rearrangement of data structures.

Consequently, the working set load size is reduced to

WSLmultiDot(X,V ) ≡ 2nsLd.

The potential impact of this rearrangement on data movement is determined

by comparing the total storage requirement versus the size of the cache. If SR <

sizeof(cache), then the use of the interleaved storage format has no impact on data

movement because both the standard and multivector implementations have similar

data reuse. However, if SR > sizeof(cache), then all operands do not fit into cache.

In this case, the working set size of an implementation determines the amount of data

movement. An implementation with the smaller WSL has greater data reuse and

reduced data movement. In the dot product example from the previous paragraph, we

see that if SR ≫ sizeof(cache), then a single call to multiDOT (X,V ) reduces data

movement versus DOT (xi, vj) by a factor of s because

WSLDot(xi,vj)

WSLmultiDot(X,V )
=

2ns2

2ns
= s.

The advantages of multivectors are not limited to dot products but also hold for other

linear algebra operations. In fact, the ratio of working set sizes for s = 2 is demonstrated

in Chapter 4 for an entire iterative solver.

To evaluate the advantage of the multivector optimization on an entire iterative

solver, we must first determine the impact of the multivector optimization on several

other common linear algebra operations, including matrix-vector multiplication and

axpy.

Let multiMxV (A,V ) be the matrix-multivector multiplication, while MxV (A, vi)

is the standard matrix-vector multiplication. We consider the standard approach first.

The standard approach involves forming each matrix-vector production MxV (A, vi) for

i = 1 : s with s calls to MxV (). Because WSLMxV () = sizeof(A) + sizeof(vi), using



www.manaraa.com

15

(2.1) the working set load size for a single call to MxV () is

WSLMxV () ≡ (nnz + n)Ld + (nnz + n)Li.

Therefore, the calculation of MxV (A, vi) for i = 1 : s has a working set size of

WSLMxV (A,vi) ≡ s · (nnz + n)Ld + s · (nnz + n)Li.

A single call to the multiMxV (A,V ) routine calculates all s matrix-vector products of

the constituent vectors simultaneously. The matrix-multivector multiply therefore only

accesses A once and the working set size is reduced to

WSLmultiMxV (A,V ) ≡ (nnz + ns)Ld + (nnz + n)Li.

If SR > sizeof(cache), then all operands do not fit into cache and the working set size of

an implementation determines the amount of data movement. So if SR ≫ sizeof(cache)

and nnz ≫ n · s, then a single call to multiMxV (A,V ) reduces data movement versus

MxV (A, vi) by as much as a factor of s because

WSLMxV (A,vi)/WSLmultiMxV (A,V ) ≈ s.

Let multiAXPY (U, V ) be the multivector axpy operation that evaluates the ex-

pression U = U + V · Γ, where U, V ∈ R
n×s and Γ ∈ R

s×s. Let AXPY (u, v) represent

the standard approach that evaluates the expression u = u + γv, where u, v ∈ R
n and

γ ∈ R. We consider the standard approach first. The working set size for a single call

to AXPY () is

WSLAXPY () ≡ (2n + 1)Ld.

Therefore, the calculation of AXPY (ui, vj) for i = 1 : s, j = 1 : s has a working set

load size of

WSLAXPY (ui,vj) ≡ (2n + 1)s2Ld.



www.manaraa.com

16

Because a single call to the multiAXPY (U, V ) routine calculates all s2 axpy operations

simultaneously, the working set size is

WSLmultiAXPY (U,V ) ≡ (2n + s)sLd.

If SR ≫ sizeof(cache) and n ≫ s, then a single call to multiAXPY (U, V ) reduces

data movement versus AXPY (ui, vj) by as much as a factor of s because

WSLAXPY (ui,vj)/WSLmultiAXPY (U,V ) ≈ s.

The storage requirements and working set sizes for both non-multivector and mul-

tivector versions of the dot product, axpy, and matrix-vector multiply are summarized

in Table 2.1. Note that each of the standard routines must be executed the number of

times indicated in column 2 of Table 2.1 to calculate the equivalent result of a single

call to the multivector equivalent of size s.

Table 2.1: Total storage requirements, and working set sizes for the non-multivector
and multivector implementations of the dot product, axpy, and matrix-vector multiply
routines.

# of
Operation calls SR WSL

Non-Multivector Operations

DOT (ui, vj) s2 (2n + s)sLd 2ns2Ld

AXPY (ui, vj) s2 (2n + s)sLd (2n + 1)s2Ld

MxV (A,ui) s (nnz + 2ns)Ld (nnz + n)sLd

+(nnz + n)Li +(nnz + n)sLi

Multivector Operations

multiDOT (U, V ) 1 (2n + s)sLd 2nsLd

multiAXPY (U, V ) 1 (2n + s)sLd (2n + s)sLd

multiMxV (A,U) 1 (nnz + 2ns)Ld (nnz + ns)Ld

+(nnz + n)Li +(nnz + n)Li



www.manaraa.com

Chapter 3

Krylov Subspace Algorithms

In Section 2.5 we derived the analytical expressions that describe the data move-

ment required for several linear algebra operations. Because iterative solvers are com-

posed of a collection of linear algebra operations, we can also derive the corresponding

analytical expression for an entire iterative algorithm. In Section 3.4, we provide a

derivation of the analytical expressions for a Krylov iterative algorithm, which is used

for the manual memory analysis in Chapter 4. However, we do not provide derivations

for all iterative algorithms described in this chapter. Instead, we use automated memory

analysis on the remaining iterative algorithms in Chapter 6, a technique that does not

require the derivation of any analytical expressions. We next describe several Krylov

algorithms on which memory analysis is applied in subsequent chapters.

Krylov subspace solvers are a family of iterative algorithms that approximate a

solution to

Ax = b, (3.1)

where A ∈ R
n×n is a sparse coefficient matrix and x, b ∈ R

n are dense vectors. The

solution x is of the form x ∈ x0 + Km(A, r0), where

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}

is a Krylov subspace of size m. Here x0 is an initial guess and the initial residual r0 is

r0 = b−Ax0. The mth estimate for the solution xm must satisfy the Galerkin condition



www.manaraa.com

18

b−Axm ⊥ Lm, where Lm is another m dimensional subspace. Different members of the

Krylov subspace family have different subspaces Lm. The iterative process continues

until convergence is achieved.

Two Krylov subspace algorithms are used extensively in practice. The Conjugate

Gradient (CG) algorithm [54] was originally developed in 1952 as a direct solver, where A

is a symmetric positive definite matrix. The CG algorithm was discarded, because it had

inferior numerical properties and equivalent operation counts to Gaussian Elimination

with pivoting. It was later advanced by [38, 88] as a iterative solver. Saad [92] developed

the general minimum residual (GMRES) algorithm when A is nonsymmetric. Like CG,

GMRES is stable and guaranteed to converge in at most n iterations.

In Section 3.1, we describe the basic CG algorithm along with a version of CG

with a merged inner-product [28]. In Section 3.2, we describe a multishifted Conjugate

Gradient (mCG) algorithm whose memory efficiency we compare with the merged inner-

product CG algorithm in Chapter 7. We next examine the GMRES algorithm in Section

3.3, followed by a block variant of GMRES in Section 3.4. We do not examine the

convergence issues associated with each existing variant here, but rather provide the

basis for evaluating the memory efficiency of each algorithm.

3.1 Conjugate Gradient

The conjugate gradient method (CG) is a Krylov subspace algorithm where Lm =

Km and A is symmetric positive definite. As with all Krylov subspace methods, the

initial residual r0 = b − Ax0 and the approximate solution xm ∈ x0 + Km satisfy the

Galerkin condition b−Axm ⊥ Km. If v1 = r0/ ‖ r0 ‖2, where β =‖ r0 ‖2, then Arnoldi’s

method constructs a orthogonal basis Vm such that

V T
mAVm = Hm.



www.manaraa.com

19

Then because xm = x0 + Vmym

rm = b − Axm

= b − A(x0 + Vmym)

= r0 − AVmym.

By the Galerkin condition V T
m rm = 0, V T r0 = V T AVmym = Hmym = βe1 holds because

V T r0 = βe1. The approximate solution xm after m iterations is

xm = x0 + Vmym

ym = H−1
m (βe1).

Because A is symmetric, Hm is also symmetric and therefore equal to a tridiagonal

matrix Tm. The matrix Tm can be decomposed by LU factorization, which allows the

new approximation xj to be calculated by a simple recurrence relationship [91]. The

complete conjugate gradient algorithm is provided in Figure 3.1, where A ∈ R
n×n,

rj , pj, w, xj ∈ R
n, and αj, βj , φj ∈ R. The Conjugate Gradient algorithm in Figure

3.1 requires two inner-products: the first (w, pj) in line 4 and the second in line 8 of

Figure 3.1. Because an update of the residual vector rj+1 is both dependent on the first

inner-product and required for the second inner-product, both inner-products must be

calculated separately.

A variation of the base Conjugate Gradient algorithm with a merged inner-

product [28] allows all inner-products to be calculated simultaneously. The merged

inner-product CG is particular well-suited for parallel applications, an environment in

which the calculation of separate inner-products is particularly expensive. The merged

inner-product version of CG, which is based on a rearrangement of the loop structure,

is provided in Figure 3.2, where A ∈ R
n×n, rj , pj, sj , vj , xj ∈ R

n, and αj, βj, γj, ǫj ,

δj , σj ∈ R. A single iteration of the base CG algorithm is performed in lines 1 and



www.manaraa.com

20
1. r0 = b − Ax0, p0 = r0, φ0 = (r0, r0)
2. for j = 0, 1, . . . until convergence
3. w = Apj

4. δj = (w, pj) /* inner-product */
5. αj = φj/δj

6. xj+1 = xj + αjpj

7. rj+1 = rj − αjw
8. φj+1 = (rj+1, rj+1) /* inner-product */
9. βj = φj+1/φj

10. pj+1 = rj+1 + βjpj

11. end

Figure 3.1: Conjugate Gradient (CG) algorithm.

2 to initialize the iteration. Note that three inner-products lines 6 to 8 can be calcu-

lated simultaneously. The memory efficiency of the merged inner-product CG algorithm

along with the multishifted Conjugate Gradient algorithm described next is examined

in detail in Chapter 7.

3.2 Multishifted Conjugate Gradient

We next examine an iterative algorithm that solves a shifted set of linear equations

(A + σ(k)I)x(k) = b, (3.2)

where σ(k) ∈ R, A ∈ R
n×n is symmetric positive definitive and I is the identity ma-

trix. The value σ(k) is a diagonal shift of the coefficient matrix A. Shifted Kyrlov

iterative algorithms are possible because K(A, r0) = K(A + σI, r0), where K(A, r0) =

span{r0, A r0, A
2r0, . . .}. It is therefore possible to approximate multiple solutions

x(k) = x
(k)
0 + K(A, r0) by calculating a single Krylov subspace.

Several multishifted Krylov algorithms exist [44, 58, 41, 109, 46], for the solution

of shifted linear systems. The multishifted Conjugate Gradient Least Squares algorithm

(CGLS) of van den Eshof and Sleijpen [109] is based on the stationary QD transform of

Rutishauser [38]. The QD transform allows the calculation of the LσDσLσT factorization



www.manaraa.com

21
1. r0 = b, γ0 = (r0, r0), p0 = r0, v0 = Ap0, s0 = v0

2. σ0 = (p0, v0), x1 = γ0p0/σ0

3. for j = 1, 2, . . . until convergence
4. zj = M−1rj

5. sj = Azj

/* inner-products */
6. γj = (zj , rj)
7. δj = (zj , sj)
8. ǫj = (rj , sj−1)

/* calculate scalars */
9. βj = γj/γj−1, σj = δj + βjǫj , αj = γj/σj

/* update vectors */
10. pj = zj + βjpj−1

11. vj = sj + βjvj−1

12. xj+1 = xj + αjpj

13. rj+1 = rj − αjvj

14. end

Figure 3.2: Merged Inner-Product Conjugate Gradient algorithm.

of a shifted system based on the LDLT of a base system, where LσDσLσT = LDLT +σI.

However, we are not interesting in solving (3.2) for x(k) for a single right-hand side but

for different right-hand sides b(k). We must therefore solve

(A + σ(k)I)x(k) = b(k). (3.3)

A possible technique to solve (3.3) is by the use of a multishifted block Con-

jugate Gradient algorithm. We first solve the block system AX ′ = B where X ′ =

[x′(1), x′(2), . . . , x′(s)] and B = [b(1), b(2), . . . , b(s)] using a block Conjugate Gradient [35,

79, 80] algorithm. We use the QD transform to apply the shift σ(k) and calculate x(k).

However, a multishifted block Conjugate Gradient algorithm, also unnecessarily solves

(A + σ(l)I)x(l) = b(k), (3.4)

where l 6= k. While a block Conjugate Gradient algorithm potentially reduces iteration

count, we do not believe the reduction in iteration count is sufficient to defray the

additional cost of solving (3.4).

We therefore combine the Conjugate Gradient algorithm in Figure 3.1 with the

QD transform technique to create our multishifted Conjugate Gradient (mCG) algo-



www.manaraa.com

22

rithm. While we must compute multiple Krylov subspaces, our mCG algorithm allows

for other potential advantages. In particular, this algorithm requires only a single co-

efficient matrix A and thus a single preconditioner for all shift values. However, the

potential utility of the multishifted iterative algorithm is limited because precondition-

ers must maintain the shifted structure [58]. Consider the preconditioned shifted system

M−1(A + σ(k)I)x(k) = M−1b(k), (3.5)

where M is a preconditioner with shifted structure. We use right preconditioning to

transform (3.5) while maintaining its shifted structure,

(M−1A + σ(k)M−1)x(k) = M−1b(k)

(M−1AMM−1 + σ(k)M−1)x(k) = M−1b(k)

(M−1AM + σ(k))x̃(k) = M−1b(k),

where x̃(k) = M−1x(k). The final form is

(M−1Ã + σ(k)I)x̃(k) = M−1b(k), (3.6)

where Ã = AM . The multishifted Conjugate Gradient algorithm with right precondi-

tioning is illustrated in Figure 3.3. Because the mCG algorithm is currently based on

the CG algorithm in Figure 3.1, it possesses the same inner-product structure. The

mCG algorithm is therefore less desirable for parallel computing environments. How-

ever, we believe that it is possible to apply the QD transform technique to the merged

inner-product version of CG.

3.3 GMRES

GMRES is a Krylov subspace method where Lm = AKm. The Krylov subspace

Km has an orthonormal basis Vm = {v1, v2, . . . , vm}, where v1 = r0/β, and β =‖ r0 ‖2.



www.manaraa.com

23
1. r0 = b, p0 = r0, z0 = M−1r0, φ0 = (z0, r0), Ã = AM
2. x̃σ

0 = 0, pσ
0 = z0, γ

σ
0 = 1, tσ

0 = σ
3. for j = 0, 1, . . . until convergence
4. wj = Ãpj

5. αj = φj/(wj , pj)
6. rj+1 = rj − αjwj

7. zj+1 = M−1rj+1

8. φj+1 = (zj+1, rj+1)
9. βj+1 = φj+1/φj

10. pj+1 = zj+1 + βj+1pj

/* constants for shifted system */
11. lσ = 1 + αjt

σ
j

12. tσ
j+1 = σ + βj+1t

σ
j /lσ

13. γσ
j+1 = γσ

j lσ

/* update vectors for shifted system */
14. x̃σ

j+1 = x̃σ
j + αjp

σ
j /γσ

j+1

15. pσ
j+1 = zj+1 + βj+1p

σ
j /lσ

16. end
17. xσ

j+1 = Mx̃σ
j+1

Figure 3.3: Preconditioned Multishifted Conjugate Gradient (mCG) algorithm.

The orthonormal basis Vm is created by Arnoldi’s method, which constructs an upper

Hessenberg matrix Hm such that

AVm = Vm+1Hm, (3.7)

where Vm ∈ R
m×n and Hm ∈ R

(m+1)×m.

The solution x to (3.1) is approximated after m iterations by xm = x0 + Vmy

where y ∈ R
m. For convergence, we want to minimize

‖ rm ‖2 = ‖ b − Axm ‖2 = ‖ b − A(x0 + Vmy) ‖2 .

Using (3.7) we get,

b − A(x0 + Vmy) = r0 − AVmy

= βv1 − Vm+1Hmy

= Vm+1(βe1 − Hmy),

where e1 is the canonical vector. We can find a y that minimizes ‖ βe1 − Hmy ‖2 by

solving the (m+1)×m least squares problem. The full GMRES algorithm is illustrated in



www.manaraa.com

24
1. r0 = b − Ax0, β =‖ r0 ‖2, v1 = r0/β
2. for j = 1 : m
3. w = Avj

4. for i = 1 : j
5. hi,j = (w, vj)
6. w = w − vihi,j

7. end
8. hj+1,j =‖ w ‖2

9. vj+1 = w/hj+1,j

10. end
11. Hm = {hi,j}1≤i≤j+1;1≤j≤m

12. find ym s.t. ‖ βe1 − Hmy ‖2 is minimized
13. xm = x0 + Vmym

Figure 3.4: GMRES.

Figure 3.4. Note that a dot product indicated by (w, vj) is required in line 5 of Figure 3.4

as well as an axpy operation in line 6. Lines 4 to 7 of Figure 3.4 represent the modified

Gram-Schmidt orthogonalization in the Arnoldi process. The size of the orthogonal

basis Vm increases linearly as the number of iterations j increases, while the amount of

orthogonalization work increases exponentially. If the number of iterations required to

converge mc is small (mc ≪ n), then the linear increase in work may be acceptable. If

however mc ≈ n, the amount of orthogonalization work and required storage becomes

untenable. This characteristic of GMRES has prompted the development of a restarted

version of GMRES. Restarted GMRES with a restart size of m (GMRES(m)) [92] limits

the size of the orthogonal basis to m vectors. If the convergence criterion is not satisfied,

the approximate solution xm is used as the initial guess x0 for another cycle of GMRES.

This process is repeated until convergence is achieved.

3.4 Block LGMRES

Next we examine a block Krylov subspace algorithm. Block algorithms have

long been advocated as an approach to reduce the time to solution for a series of linear



www.manaraa.com

25

systems with an identical coefficient matrix and multiple right-hand sides. The equation

Ax(k) = b(k), (3.8)

for k = 1, . . . , s right-hand sides is rewritten as

AX = B, (3.9)

where X = [x(1), x(2), . . . , x(s)] and B = [b(1), b(2), . . . , b(s)]. A block Krylov subspace

after m iterations is

Km(A,R0) = span{r
(1)
0 , . . . , r

(s)
0 , Ar

(1)
0 , . . . , Ar

(s)
0 , . . . , Am−1r

(1)
0 , . . . , Am−1r

(s)
0 },

where R0 = B −AX0 for some set of initial guesses X0. The approximate solution Xm

after m iterations is Xm ∈ X0 + Km(A,R0).

We concentrate on one block Krylov subspace algorithm in particular, the block

LGMRES (B-LGMRES) algorithm [10]. LGMRES (“Loose” GMRES) is a variant of

restarted GMRES that accelerates convergence by augmenting the Krylov subspace

with error approximations. The algorithm LGMRES(m,k) creates a Krylov subspace

of size m + k where there are m vectors formed in the standard way augmented with k

error approximations. The ith error approximation is zi = xi − xi−1, where xi and xi−1

represent the approximate solution after the ith and (i− 1)th restart cycles respectively.

Error approximations from the k previous restart cycles are appended to the Krylov

subspace. The Krylov space after the ith restart cycle, where i > k for LGMRES(m,k),

is thus

K(A, ri−1) = span{ri−1, Ari−1, A
2ri−1, . . . , A

m−k−1ri−1, zi−k−1, . . . , zi−1},

where ri−1 is the residual from the (i − 1)st restart cycle. The inclusion of error ap-

proximations from previous restart cycles reduces the loss of residual information from

previous restart cycles [10].



www.manaraa.com

26
1. ri = b − Axi, β = ‖ri‖2

2. Ri = [ri, zi, . . . , zi−k+1]
3. Ri = V1R̂
4. for j = 1 : m
5. Uj = AVj

6. for l = 1 : j
7. Hl,j = V T

l Uj

8. Uj = Uj − VlHl,j

9. end
10. Vj = Uj+1Hj+1,j

11. end
12. Wm = [V1, V2, . . . , Vm], Hm = {Hl,j}1≤l≤j+1;1≤j≤m

13. find ym s.t. ‖βe1 − Hmym‖2 is minimized
14. zi+1 = Wmym

15. xi+1 = xi + zi+1

Figure 3.5: B-LGMRES(m, k) for restart cycle i.

Appending the zi error approximations to the end of the Krylov subspace is one

technique to add error approximation information into the solution space. Adding the

zi approximations as additional right-hand side vectors creates a block formulation. For

the block implementation of LGMRES (B-LGMRES(m,k)), set B = [b, zi−k−1, . . . , zi−1]

and X = [xi, 0, . . . , 0], where X,B ∈ R
n×s and s = k + 1. The solution X is approxi-

mated after m iterations by X ∈ X0 + Km(A,R0), where

Km(A,R0) = span{ri−1, Ari−1, . . . , A
m−k−1ri−1, . . . , A

m−k−1zi−k−1, . . . , A
m−k−1zi−1}.

The block formulation of B-LGMRES in Figure 3.5 allows the use of the multivector

optimization described in Section 2.5.

We analyze the impact the multivector optimization techniques described in Sec-

tion 2.5 have on the block algorithm by analyzing the required data movement on a line-

by-line basis. Table 3.1 provides the analytical expressions for both the total storage

requirement (SR) and working set size (WSL), both with the multivector optimization

(MV) and without (non-MV). Additionally, we also provide totals for three sections of

the B-LGMRES algorithm. We denote the matrix-vector product in line 5 the MatMult



www.manaraa.com

27

section. Lines 6 to 9 in Figure 3.5 are the modified Gram-Schmidt orthogonalization

(MGS), while the remaining lines 10 and 12 to 15 are denoted Other.

Table 3.1: Total storage requirements and working set sizes for both the non-multivector
(non-MV) and multivector (MV) approachs for each line of the B-LGMRES algorithm
in Figure 3.5, where s = k + 1.

Line Operation SR WSL (bytes)
non-MV MV

MatMult

5 MxV () (nnz + 2sn)Ld s (nnz + n)Ld (nnz + sn)Ld

+(nnz + n)Li +s (nnz + n)Li +(nnz + n)Li

MGS

7 j × DOT () (2n + s)sLd (2n + 1)s2Ld 2nsLd

8 j × AXPY () (2n + s)sLd (2n + 1)s2Ld (2n + s)sLd

10 DOT () (2n + s)sLd (2n + 1)s2Ld 2nsLd

Total MGS (2 n s + O(s2m2))Ld ((4n + 2)m2s2 ((4n + s)m2 s
+(2n + 1)ms2)Ld +2n ms)Ld

Other

12 Update Hess. O(s2 m2)Ld O(s2 m2)Ld O(s2 m2)Ld

13 MAXPY () (n + n sm)Ld n s2 (m + 1)Ld n s (m + 1)Ld

15 AXPY () 2nLd 2nLd 2nLd

Total Other (2n + n sm (n(s2m + s2 + 2) (n(sm + s + 2)
+O(s2 m2))Ld +O(s2 m2))Ld +O(s2 m2))Ld

We delineate the MatMult, MGS, and Other sections of the B-LGMRES algo-

rithm to allow direct comparison with experimental results in Chapter 4 using man-

ual memory analysis techniques. For example, to consider the impact the multivector

optimization has on the MatMult section of the B-LGMRES algorithm, we calculate

SRMatMult and compare it with the sizes of the L1 and L2 caches. If SRMatMult ≫

sizeof(cacheL1), then the amount of data moved between the L1 and L2 caches would

be related to the value of WSLMatMult for both the non-MV and MV implementations.

Inspection of Table 3.1 reveals that the MV implementation has a lower WSLMatMult

than the non-MV implementation. Let WSLnon−MV
MatMult and WSLMV

MatMult indicate the

working set sizes for the non-MV and MV version of the MatMult section of the B-



www.manaraa.com

28

LGMRES algorithm, respectively. Then the ratio

WSLnon−MV
MatMult

WSLMV
MatMult

provides the expected reduction in data movement in the MatMult section of code for

the multivector implementation versus the standard implementation.

We find in Chapter 4 through a detailed comparison for both the MatMult and

MGS sections of the B-LGMRES algorithm that data movement through the memory

hierarchy is accurately predicted based on ratios of working set sizes. Further we find

that reduction in data movement correlates well with reduction in execution time.



www.manaraa.com

Chapter 4

Manual Memory Analysis

In this chapter, we examine how manual memory analysis is used to improve the

implementation of a Krylov iterative algorithm. Manual memory analysis is performed

by using the analytical expressions derived in Chapter 3 to calculate the predicted data

movement for an iterative algorithm. We then compare the predicted data movement

to the measured data movement for the B-LGMRES algorithm. We describe in detail

the manual memory analysis process to provide a comparison to automated memory

analysis described in Chapter 6. We first describe the test configuration in Section

4.1. We demonstrate the critical importance of the matrix-multivector optimization

in Section 4.2. We provide results from monitoring the data movement through the

memory hierarchy during the B-LGMRES solve to explain differences in execution time

between different implementations of B-LGMRES in Section 4.3. We demonstrate that

a reduction in execution time for our test problems correlates more strongly to reduction

in data movement between levels of cache than to a reduction between main memory

and cache. The following chapter represents joint work [9] and has been accepted for

publication.

4.1 Test Configuration

We implemented B-LGMRES in C using PETSc 2.1.5 (Argonne National Labo-

ratory’s Portable, Extensible Toolkit for Scientific Computation) [11]. The PETSc 2.1.5



www.manaraa.com

30

libraries contain the tools for storing a multivector in the interlaced format, which is

referred to as multi-component vectors in the PETSc manual [11], is described in Section

2.5. PETSc provides a matrix-vector multiply routine for multiplying a matrix in AIJ

format by a multi-component vector (the MatMult function on a matrix created with

the MatCreateMAIJ function). The PETSc AIJ matrix storage format is equivalent

to compressed sparse row storage described in Section 2.2. We also modified our local

installation of PETSc to include multivector versions of the PETSc routines VecDot, Ve-

cAXPY, VecMAXPY, and MatSolve. VecDot and VecAXPY are the vector dot product

and axpy routines respectively, and correspond to the DOT and AXPY notation intro-

duced in Section 2.4. VecMAXPY adds a scaled sum of vectors to a vector. MatSolve

performs a forward and back solve for use with the ILU preconditioner.

We use test problems from the University of Florida Sparse Matrix Collection

[27], the Matrix Market Collection [77], and the PETSc test collection [11]. The test

problems used for this chapter are listed in Table 4.1. All performance results provided

are measured on a single processor of the SUN Ultra II compute platform described in

detail in Table 6.1.

4.2 Multivector Optimization and B-LGMRES

Recall from Section 2.5 that the multivector interlacing scheme places correspond-

ing elements of its constituent vectors in the same cache line. As a result, the matrix-

multivector multiply routine uses a higher fraction of elements from each cache line for

each access of a nonzero element of the coefficient matrix A than a non-multivector

routine. Therefore, the number of floating-point operations performed per byte of data

read from memory is increased. The advantages of interlacing data items in general are

explained in detail in [52]. To demonstrate the benefit of the multivector optimization,

we implemented B-LGMRES in PETSc both with and without multivectors. We refer to

our implementation of B-LGMRES with multivectors as the MV implementation. The



www.manaraa.com

31

Table 4.1: List of test problems together with the matrix order (n), number of nonzeros
(nnz), preconditioner, and a description of the application area (if known).

Problem n nnz Preconditioner Application Area

1 pesa 11738 79566 none
2 epb1 14734 95053 none heat exchanger simulation
3 memplus 17758 126150 none digital circuit simulation
4 zhao2 33861 166453 none electromagnetic systems
5 epb2 25288 175027 none heat exchanger simulation
6 ohsumi 8140 1456140 none
7 aft01 8202 125567 ILU(0) acoustic radiation, FEM
8 memplus 17758 126150 ILU(0) digital circuit simulation
9 arco5 35388 154166 ILU(0) multiphase flow: oil reservoir
10 arco3 38194 241066 ILU(1) multiphase flow: oil reservoir
11 bcircuit 68902 375558 ILUTP(.01,5,10) digital circuit simulation
12 garon2 13535 390607 ILUTP(.01,1,10) fluid flow, 2-D FEM
13 ex40 7740 458012 ILU(0) 3-D fluid flow (die swell)
14 epb3 84617 463625 ILU(1) heat exchanger simulation
15 e40r3000 17281 553956 ILU(2) 2-D fluid flow (driven cavity)
16 scircuit 170998 958936 ILUTP(.01,.5,10) digital circuit simulation
17 venkat50 62424 1717792 ILU(0) 2-D fluid flow



www.manaraa.com

32

B-LGMRES implementation without multivectors, referred to as non-MV, represents

the best non-multivector implementation possible with the tools available in PETSc

2.1.5. Both implementations were written so as to eliminate any coping of data from

one data structure to another and represent a best coding effort.

Table 4.2 shows the impact of the multivector optimization on execution time by

comparing the MV and non-MV implementations of B-LGMRES for 10 restart cycles.

The problems in Table 4.2 are a subset of the test problems in Table 4.1 with a range of

numbers of nonzeros (nnz). The percentage improvement of the MV over the non-MV

implementation is given in the right-most column of Table 4.2, and, as expected, the

MV implementation has the lower execution time for each problem. In fact, the MV im-

plementation is about twice as fast as the non-MV implementation for B-LGMRES(15,

1) which has multivectors of size s = 2. Furthermore, the percentage improvement is

independent of nnz. For the remainder of this section, we detail how the multivector

optimization impacts various sections of the code, and explore the relationship between

data movement through the memory hierarchy and execution time.

Table 4.2: A comparison of execution times in seconds for the MV and non-MV imple-
mentations of B-LGMRES(15, 1) for 10 restart cycles. The matrix order (n), number
of nonzeros (nnz), and percentage improvement of the MV over the non-MV implemen-
tation are also listed.

Execution Time Relative
Problem n nnz MV non-MV improvement

1 pesa 11738 79566 1.7 3.5 51%
3 memplus 17758 126150 2.5 5.1 51%
10 arco3 38194 241066 17.2 30.5 44%
11 bcircuit 68902 375558 26.1 48.4 46%
13 ex40 7740 458012 9.0 20.4 51%
14 epb3 84617 463625 32.5 63.5 49%
16 scircuit 170998 958936 80.7 151.6 47%
17 venkat50 62424 1717792 61.6 113.6 46%



www.manaraa.com

33

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Breakdown of Total Execution Time for MV

F
ra

ct
io

n 
of

 to
ta

l e
xe

cu
tio

n 
tim

e

Problem

MatMult
MGS
PRECON
OTHER

Figure 4.1: Percentage of time for each section of code of the MV implementation of
B-LGMRES(15,1).

The impact of the multivector optimization is not limited to a single section of

the code but rather pervades the entire algorithm. For example, because U and V in

the B-LGMRES algorithm given in Figure 3.5 are multivectors, the orthogonalization

in lines 6 - 9 as well as the matrix-vector multiply in line 5 require modification. Three

primary sections of the B-LGMRES code are impacted by the multivector optimization:

the matrix-vector multiply (MatMult), the modified Gram-Schmidt orthogonalization

(MGS), and the application of the preconditioner (Precon), if required. Because the

Precon section of code shows similar characteristics to the MatMult section, we only

discuss the MatMult and MGS sections of code. For reference, Figure 4.1 gives the per-

centage of time spent in each of the three primary sections for the MV implementation

of the B-LGMRES algorithm. The Other category represents the difference between the

total time and the sum of times for the three sections shown. For our 17 test problems,

execution time is not consistently dominated by a single section of the B-LGMRES

code.

The MatMult section of the code is the matrix-vector multiply in line 5 of Figure

3.5. For the non-MV implementation, successive calls are made to the matrix-vector

multiply routine for each individual vector in Vj. In contrast, the MV implementation



www.manaraa.com

34

utilizes a single call to the PETSc matrix-multivector multiply routine. The matrix-

multivector multiply groups computations on the same data, which allows more floating-

point operations per byte of data loaded through the memory hierarchy. The analysis

in Section 3.4 indicates that we expect to reduce the amount of data moved through the

memory hierarchy by a factor of s, where s is the number of vectors in the multivector.

Based on the results from [9], we concentrate on a multivector of size s = 2 that

corresponds to B-LGMRES(m, k) with k = 1.

As seen in Figure 4.1, the MGS section of code (lines 6-10 in Figure 3.5) often

contributes significantly to the overall cost of the B-LGMRES algorithm. In fact, this

section of code consumes more than 50% of the time to solution for several of the

test problems. The MGS section of code requires the creation of multivector versions

of the PETSc routines VecDot and VecAXPY. Following the PETSc use of Stride to

denote multivector versions of common functions, we refer to the new versions of these

routines as VecStrideDot and VecStrideAXPY, which correspond to the multiDOT()

and multiAXPY() of Section 2.5, respectively. These routines represent the majority of

the total time for the MGS section.

The VecStrideAXPY subroutine is an important component of the MGS section

and was written using loop temporaries and loop unrolling to aid compiler optimization.

The use of loop temporaries allows a compiler to identify data reuse at the register

level. Loop unrolling further helps register reuse and allows different iterations of the

loop to occur simultaneously. In Figure 4.2, we illustrate these optimization techniques

applied to the inner loop of VecStrideAXPY. Recall that each multivector consists of

two vectors of length n. Version A in Figure 4.2 is a “naive” implementation of the loop

(without loop temporaries and unrolling). In Version B, we use loop temporaries, which

means that all references to the alpha and x arrays are replaced with scalars. Version

C incorporates loop unrolling; the inner loop in Version B is unrolled by a factor of 2.



www.manaraa.com

35

/*------------ version A ------------------------------*/

stride=2; m=stride*n;

for (i=0; i<m; i+=stride) {

y[i] = y[i] + alpha[0]*x[i] + alpha[1]*x[i+1];

y[i+1] = y[i+1] + alpha[2]*x[i] + alpha[3]*x[i+1];}

/*------------ version B ------------------------------*/

stride=2; m=stride*n;

a0=alpha[0]; a1=alpha[1]; a2=alpha[2]; a3=alpha[3];

for (i=0; i<m; i+=stride) {

x0=x[i]; x1=x[i+1];

y[i] = y[i] + a0*x0 + a1*x1;

y[i+1] = y[i+1] + a2*x0 + a3*x1;}

/*------------- version C -----------------------------*/

stride=2; m=stride*n;

unroll=2; step=unroll*stride; mm=m/step; rem=m\%stride

a0=alpha[0]; a1=alpha[1]; a2=alpha[2]; a3=alpha[3];

for (i=0; i<(mm*step); i+=step) {

x0=x[i]; x1=x[i+1]; x2=x[i+2]; x3=x[i+3];

y[i] = y[i] + a0*x0 + a1*x1;

y[i+1] = y[i+1] + a2*x0 + a3*x1;

y[i+2] = y[i+2] + a0*x2 + a1*x3;

y[i+3] = y[i+3] + a2*x2 + a3*x3;}

if (rem)

for (i=mm*step; i<m; i+=stride) {

y[i] = y[i] + a0*x[i] + a1*x[i+1];

y[i+1] = y[i+1] + a2*x[i] + a3*x[i+1];}

/*------------- version D -----------------------------*/

/* Unrolled version of B where unroll=4 */

Figure 4.2: Code to perform a multivector AXPY operation. Successive versions add
additional optimization techniques.



www.manaraa.com

36

Version D is not shown in Figure 4.2, but is similar to C except it is unrolled by a factor of

4. In Table 4.3, the time to perform each version of the loops in Figure 4.2 as well as the

functional equivalents for the non-MV implementation are provided in µsec for a subset

of the test problems with a range of matrix orders. Note how in each case successive

optimization either has no impact or reduces the execution time. The combination

of optimizations in version D of the loop results in a 40% reduction on average in

execution time for the VecStrideAXPY routine over its non-MV equivalent. Therefore,

loop version D was used in all subsequent timings in this chapter. Because the MGS

section can consume a large percentage of total execution time, simple optimizations

such as those in VecStrideAXPY have as significant an impact on overall execution time

of the solver as the use of the matrix-multivector multiply routine.

Table 4.3: Execution times in µsec for a single call to VecStrideAXPY for the non-
MV implementation and MV implementations with loop versions A - D in Figure 4.2.
Relative improvement of version D versus non-MV is also listed. Problems are listed in
increasing order of matrix size (n).

VecStrideAXPY time (µsec) Relative
Problem n non-MV A B C D Improvement

13 ex40 7740 1.8 1.3 1.3 1.2 1.1 39%
3 memplus 17758 4.4 2.9 2.8 2.7 2.5 43%
11 bcircuit 68902 17.2 11.3 10.3 10.3 9.4 45%
14 epb3 84617 20.4 14.8 12.7 12.7 12.7 38%

Having described the multivector modifications to the MatMult and MGS sec-

tions, we now determine the effects of these changes by comparing the execution times

for both sections of code in the non-MV and MV implementations. In Figure 4.3, the

y-axis indicates the ratio of execution times for the non-MV implementation to the the

MV implementation for both the MatMult and MGS sections of code. The x-axis con-

tains the 17 test problems. A value greater than one indicates that the execution time

for MV is less than that for non-MV. The MV implementation reduces the execution

time of the MatMult section by a factor 1.4 to 2.7 over the non-MV implementation.



www.manaraa.com

37

The least improvement in execution time for the MatMult section occurs for problems 4

and 9. These problems have neither the largest nor smallest n or nnz, but they do have

the lowest average number of nonzeros per row: 4.9 and 4.3, respectively. However, it

is unclear what impact matrix density has on the effectiveness of the multivector opti-

mizations in general. The execution time for the MGS section shows an even greater

improvement of MV over non-MV on average. In fact, the MV implementation of MGS

reduces execution time by a factor of 2.3 to 2.7 over the non-MV implementation.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5
Ratio of Execution Times

no
n−

M
V

 / 
M

V

Problem

MatMult
MGS

Figure 4.3: A comparison of execution time for the MatMult and MGS sections with
the non-MV implementation of B-LGMRES(15,1) versus the MV implementation for
10 restart cycles.

4.3 Reducing Data Movement in B-LGMRES

For the remainder of this chapter, we explain reductions in execution time due

to the multivector optimization using data from hardware performance counters. In

particular, we use the Htrace utility described in Section 6.1 to measure data movement

through the memory hierarchy. We denote the amount of data loaded from the mem-

ory hierarchy to the L2 cache as MbytesL2 and the amount loaded from the memory

hierarchy to the L1 cache as MbytesL1.

To determine the specific source of performance gains for the MV implementation,



www.manaraa.com

38

we first examine data movement from main memory to the L2 cache for the non-MV

and MV implementations. In Figure 4.4, the y-axis indicates the ratio of MbytesL2

for non-MV to MV for both the MatMult and MGS sections. Bars extending above 1

indicate that the non-MV implementation required greater data movement. In general,

the MV implementation has a smaller MbytesL2 than the non-MV implementation.

For the MatMult section, we expect an approximate factor of two reduction in

MbytesL2 for test problems with an SRMatMult larger than the L2 cache. Based on

equations in Table 3.1 , we determined that eight test problems have SRMatMult larger

than the 4 Mbytes L2 cache of our test system and these problems (6 and 11-17) all

have ratios from 1.75 to 2.0 in Figure 4.4. Using the equations in Table 3.1 we can

predict the expected values for the experimental results in Figure 4.4. In Figure 4.5 we

provide the expected and measured ratios for the eight test problems. The predicted

and experimental ratio of reduction in MbytesL2 with the MV implementation correlate

well with the expected reductions in MbytesL2. The average relative error between the

predicted and experimental ratio is 3.9%. These ratios of reduction in MbytesL2 with

the MV implementation also correlate well with factor of 2 reductions in execution time

for those problems seen in Figure 4.3. In other words, if a reduction in MbytesL2 is

responsible for an improvement in execution time, then Figures 4.3 and 4.4 should show

similar ratios for all problems.

For the MGS section of the algorithm, we expected MbytesL2 to be impacted

only if the storage requirement SRMGS is significantly greater than the L2 cache size.

Only problem 16 has a SRMGS = 5.2Mbytes, greater than the 4 Mbyte L2 cache size,

and it shows a ratio of MbytesL2 for non-MV to MV of 1.4. This ratio is not the

largest in Figure 4.4 and does not correlate with the improvement in execution time

in Figure 4.3. In fact, other inconsistencies exist in Figure 4.4 with respect to Figure

4.3; several problems show an increase in MbytesL2 for the MGS and MatMult sections

even though the MV implementation is faster. These inconsistencies indicate that a



www.manaraa.com

39

reduction in MbytesL2 does not accurately predict a reduction in execution time for

most of the test problems. We show subsequently that the multivector optimization

impacts a different part of the memory hierarchy for most of the test problems.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

Ratio of Mbytes
L2

no
n−

M
V

 / 
M

V

Problem

MatMult
MGS

Figure 4.4: A comparison of data movement from main memory to L2 cache in the
MatMult and MGS sections for the non-MV implementation of B-LGMRES(15,1) versus
the MV implementation for 10 restart cycles.

Now we consider data loaded from the memory hierarchy to the L1 cache. Analo-

gously to the plot in Figure 4.4, Figure 4.6 shows the ratio of MbytesL1 for the non-MV

to MV implementations for the MatMult code section, while Figure 4.7 shows the same

ratio for the MGS section of code. For the MatMult section of code, we expected test

problems with SRMatMult ≫ sizeof(cacheL1) to show a reduction in MbytesL1. Test

problem 1 has the smallest SRMatMult at 978 Kbytes, which is significantly larger than

the 32 Kbyte L1 cache. Because all tests problems satisfied this size criterion, Figure

4.6 shows ratios of non-MV to MV that do in fact range from 1.5 to 1.9. Additionally,

the predicted ratios using equations from Table 3.1 correspond well with the experimen-

tal measured ratios. The average relative error between predicted and experimental is

5.7%.

Similarly, for the MGS section of code, test problems with SRMGS significantly

greater than the size of the L1 cache should also show a reduction in MbytesL1. Be-



www.manaraa.com

40

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

Mbytes
L2

 for 10 restart cycles

no
n−

M
V

 / 
M

V

Problem

Measured
Predicted

Figure 4.5: A comparison of experimental and predicted data movement from main
memory to L2 cache in the MatMult section for the non-MV implementation of B-
LGMRES(15,1) versus the MV implementation for 10 restart cycles.

cause the smallest SRMGS is 241 Kbytes (test problem 12), all of the test problems in

Figure 4.7 have experimental ratios of non-MV to MV that range from 1.6 to 2.0 and

correspond well with the predicted ratios. The average relative error between predicted

and experimental is 1.9%. Furthermore, the reduction in MbytesL1 is consistent with

the reduction in execution time seen in Figure 4.3.

Now we compare reductions in total execution time and data movement for B-

LGMRES. The y-axis in the top panel in Figure 4.8 indicates the execution time and

MbytesL1 (the left and right bars, respectively) of the non-MV implementation divided

by that of the MV implementation. The closer the two bars are in value for each problem,

the stronger the correlation between the reduction in MbytesL1 and in execution time

for that problem. The top panel in Figure 4.8 clearly shows the correlation between

reduction in execution time and total reduction in MbytesL1. A similar plot in the

bottom panel of Figure 4.8 for MbytesL2 does not show such a correlation between

MbytesL2 for most of the test problems. Therefore, we conclude that a reduction

in MbytesL1 is a better predictor than MbytesL2 for the reduction in execution time

achieved by the multivector optimizations for our test problems. For much larger test



www.manaraa.com

41

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Mbytes
L1

 for 10 restart cycles (MatMult)

no
n−

M
V

 / 
M

V

Problem

Measured
Predicted

Figure 4.6: A comparison of experimental and predicted data movement from L2 cache
to L1 cache in the MatMult section for the non-MV implementation of B-LGMRES(15,1)
versus the MV implementation for 10 restart cycles.

problems, for example, where matrix A and SRMGS are larger than the L2 cache size,

we expect that the reduction in MbytesL2 would more strongly correlate to execution

time.

The results presented in this chapter demonstrate that use of multivectors enables

an efficient implementation of a block iterative solver that reduces data movement. We

also demonstrate that reduction in data movement correlates well with reduction in ex-

ecution time. While we demonstrate that the reduction in data movement is accurately

predicted using an a priori memory analysis of data movement, the process is clearly

limited. Because the manual memory analysis involves the comparison of various ratios,

multiple implementations of a single algorithm are required. Furthermore, the complex-

ity of the manual memory analysis process is excessive and a significant impediment to

regular usage. In the next chapter we examine the development of a tool that automates

memory analysis.



www.manaraa.com

42

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

Mbytes
L1

 for 10 restart cycles (MGS)

no
n−

M
V

 / 
M

V

Problem

Measured
Predicted

Figure 4.7: A comparison of experimental and predicted data movement from L2 cache
to L1 cache in the MGS section for the non-MV implementation of B-LGMRES(15,1)
versus the MV implementation for 10 restart cycles.

0 2 4 6 8 10 12 14 16 18
0

1

2

3
Correlation Between Total Execution Time and Data Movement

no
n−

M
V

 / 
M

V

Problem

Time
Mbytes

L1

0 2 4 6 8 10 12 14 16 18
0

1

2

3

no
n−

M
V

 / 
M

V

Problem

Time
Mbytes

L2

Figure 4.8: The upper panel is a comparison of data movement from L2 to L1 cache in
the MatMult and MGS sections for the non-MV implementation of B-LGMRES(15,1)
versus the MV implementation for 10 restart cycles. The lower panel compares data
movement from main memory to L2 cache.



www.manaraa.com

Chapter 5

Sparse Linear Algebra Memory Model Language Processor

The memory analysis performed on the B-LGMRES algorithm described in Chap-

ter 4 is a time-consuming, laborious, and error-prone process. Manual memory analysis

requires numerous steps that include conversion from mathematical form into an exe-

cutable form, line-by-line analysis to determine storage requirements and working set

sizes, and selection of the machine and a representative problem configuration. The

process is too complex to perform on a regular basis. We therefore have developed the

Sparse Linear Algebra Memory Model (SLAMM) language processor to automate the

memory analysis process. The SLAMM language processor consists of an executable

problem, utility functions, and a set of directives to control memory analysis. SLAMM

inputs Matlab [69] source code and outputs equivalent source code along with statements

to calculate the required data movement. We chose Matlab because it is a ubiquitous

programming language in numerical analysis research.

We begin our discussion of the SLAMM language processor with the description

of related work predicting code performance and translating Matlab code in Section

5.1. In the next four sections, we describe the basic computational tasks for a language

processing problem. In Section 5.2, we describe lexical analysis, followed by discussion of

syntactical analysis in Section 5.3. In Section 5.4, we describe several different semantic

analysis tasks, followed by Section 5.5 in which we describe code transformation. The

development of the SLAMM language processor was greatly simplified by the compiler



www.manaraa.com

44

construction suite Eli [50, 115] briefly described in Section 5.6. The choice of Matlab as

the language on which to perform the memory analysis has several drawbacks that stem

from its weak typing and ambiguous syntax. We describe the difficulties encountered

during the development of SLAMM and our resulting solutions in Section 5.7. In Section

5.8, we provide specifics on the memory analysis computations. Finally, in Section 5.9,

we provide a operational description of the SLAMM language processor.

5.1 Related Work

We begin by discussing related efforts to the SLAMM language processor. In

Section 5.1.1 we describe work to model the impact of scientific applications on the

memory hierarchy using compiler techniques. These techniques use a combination of

source code analysis and instrumentation to predict both execution time and cache

miss-rates. In Section 5.1.2, we describe efforts to translate Matlab code into other

representations.

5.1.1 Automated Performance Prediction

Cascaval [19] uses the Polaris compiler to predict the performance of serial FOR-

TRAN and C codes. The input code is analyzed by the Polaris compiler, which adds

analytical expressions that predictions execution time and cache miss-rates. The pre-

dictions of execution time and cache miss-rates, which are within an average 20% error,

are used by the Polaris compiler to improve code optimization.

Fahringer [39] developed the Parameter based Performance Prediction Tool (P 3T )

which is integrated with Vienna Fortran compiler. P 3T automatically estimates cache

performance for both sequential and data parallel FORTRAN using simple cache model.

The PAMELA compiler [111, 112] adds symbolic cost expressions for data parallel

problems, which in combination with a simple machine model, allows it to predict

execution time to within 10% error.



www.manaraa.com

45

Unlike the related work, SLAMM does not analyze FORTRAN or C source code

but rather analyzes Matlab code. The use of Matlab allows the analysis of an algorithm

before implementation. SLAMM therefore provides feedback to the algorithm developer

during design phase. Further, an analysis of a Matlab version of an algorithm is not

biased by the implementation details present in a FORTRAN or C implementation. A

SLAMM analysis predicts the minimum possible data movement needed by an algorithm

versus the required data movement.

5.1.2 Compiling Matlab Code

There have been many efforts to convert or compile Matlab code into other rep-

resentations [12, 29, 57, 86, 60]. The MCC compiler [57] supplied with Matlab and the

FALCON compiler [29] are the most relevant to the SLAMM language processor efforts.

The MCC compiler converts Matlab code into C code, which can then be compiled into

a stand-alone executable program. Examination of the C code generated by MCC re-

veals that it converts each Matlab statement into a separate subroutine call. While

the overhead of this technique for large linear algebra operations like a matrix-matrix

multiply may be minimal; the overhead for a single scalar assignment is excessive. The

subroutine approach is used to address several of the difficulties of compiling Matlab

code that stem from its weak typing. A language is weakly typed if it does not require

the programmer to specify the type, shape, or size of variables. Matlab’s weak typing

makes it both easy to use and difficult to compile.

The subroutine approach of the MCC compiler addresses Matlab’s weak typing

by checking type, shape, and size, and if necessary, changing the configuration of the

variable during each subroutine call. The FALCON compiler, which converts Mat-

lab into FORTRAN90 code, performs much more extensive type analysis during the

compilation phase. FALCON uses several techniques to address Matlab’s weak typing,

including multiple forward type analysis passes and a value prediction phase [30].



www.manaraa.com

46

5.2 Lexical Analysis

We begin our discussion of the main computational phases of a compiler with

lexical analysis. Both lexical and syntactical analysis consist of processing or parsing

the input text. In particular, lexical analysis converts input text into a collection of

tokens. A token is a string of one or more characters with a particular format specified

by the lexical specification. Character strings read in from the input text by a scanner

are classified into tokens. Valid tokens are passed to the syntactical processor whose

operation is described in Section 5.3. We illustrate the discussion of lexical analysis

with Figure 5.1, a simple C code with a collection of coding errors.

#include <stdio.h> /* line 1 */

main() /* line 2 */

{ /* line 3 */

int index, 2ii; /* line 4 */

double best /* line 5 */

double grav, result3; /* line 6 */

grav = 1.0g-5; /* line 7 */

result3 = grav*be@t + y[2ii]; /* line 8 */

} /* line 9 */

Figure 5.1: C code with a number of coding errors.

Because lexical analysis is concerned with the legality of input tokens, we examine

the illegal tokens, or lexical errors, in Figure 5.1. The first lexical error occurs in line 4

of Figure 5.1 with the declaration of the int variables “index” and “2ii”. Identifiers are

used as names of variables or functions. In C, identifiers consist of one or more letters

or underscores followed by one or more numerals, letters, or underscores. The token

“2ii” does not begin with either a letter or an underscore and is therefore an invalid

identifier token. Identifier token “be@t” in line 8 is invalid because of the presence of the

@ symbol. Lexical analysis is not limited to verifying the form of identifiers. Another

lexical error occurs in line 7 because the token “1.0g-5” is not a valid form of floating-

point constant. The lexical analysis scanner either generates an error for characters that



www.manaraa.com

47

are not present in the lexical specification in the case of the “@” character or passes

partial tokens to the syntactical processor for further analysis.

5.3 Syntactical Analysis

Syntactical analysis, like lexical analysis, is a component of the processing of input

text. While the lexical specification of a language is a description of all legal tokens, the

syntactical specification describes the order in which the tokens may appear in the input

text. The syntactical analysis processor forms a parse, a collection of input tokens. A

decision is made by the syntactical analysis processor to either continue the parse or

reduce the parse to concrete syntax tree representation [84]. The decision is based on

the current parse and the next token in the input text, the lookahead token. If the

lookahead token is not of an expected type, a syntax error is generated. The first syntax

error, an omission of a semicolon, occurs on line 5 in Figure 5.1 in the declaration of

the identifier “best”. The rules for token order are specified by a context-free grammar.

One possible context-free grammar, or concrete syntax specification, and the associated

syntax tree for identifier declaration is provided in Figure 5.2.

A concrete syntax tree is comprised of a collection of terminal, non-terminal, and

constant nodes. A terminal node, indicated by a circle in Figure 5.2, and a constant,

indicated by a half circle, are leaves in the syntax tree. A non-terminal node, indicated

by a rectangle in Figure 5.2, consists of a collection of other non-terminal, terminal, or

constant nodes. The node Ident in Figure 5.2, which corresponds to the identifier token

described in Section 5.2, is an example of a terminal node. A constant is one or more

characters with a specific meaning in the language and is delimited by apostrophes in

the concrete syntax specification. The root node of Figure 5.2, denoted Declaration, is

a non-terminal node comprised of two non-terminal nodes: TypeDenoter and IdentList,

followed by a constant. It is apparent that while line 6 of Figure 5.1 matches the form



www.manaraa.com

48

Declaration: TypeDenoter IdentList ’;’ .

TypeDenoter: ’int’ / ’float’ / ’double’ .

IdentList: Ident / IdentList ’,’ Ident .

D e c l a r a t i o n
I d e n t L i s tT y p e D e n o t e r

' d o u b l e '' fl o a t '' i n t '
' ; '

I d e n t L i s t ' , ' I d e n t
I d e n t

Figure 5.2: A simplified concrete syntax for variable declaration in C in both specifica-
tion and tree form.



www.manaraa.com

49

of Declaration node, line 5 of Figure 5.1 does not. The missing semicolon in line 5 of

Figure 5.1 is a syntax error.

Based on the concrete syntax tree specification, the lexical scanners and syn-

tactical processors combine to convert the input text into an abstract syntax tree.

Computations on the abstract syntax tree, or semantic analysis, are described in the

next section.

5.4 Semantic Analysis

Recall that the abstract syntax tree is constructed by the lexical scanners and

syntactical processors based on the content of input text. The semantic analysis phase

is characterized by computations on the nodes of the abstract syntax tree. The exact

nature of the computations on the abstract syntax tree varies widely and is dependent

on the purpose of the application. For example, consider several different applications:

a pretty printer, a lint processor, and a compiler that converts C code into assembly

language. The pretty printer application, which transforms input text into output text

with particular formatting rules, requires only an unparser, and not a semantic analysis

phase. An unparser transforms the abstract syntax tree into textual output as described

in Section 5.5. A lint application, which checks the validity of the input text, requires a

semantic analysis component, but not an unparser. A C to assembly language compiler

requires both extensive semantic analysis and unparser components. We describe several

common computational tasks on abstract syntax trees: name analysis, type analysis,

and tree parsing.

5.4.1 Name Analysis

Name analysis is concerned with determining the meaning of identifiers and

whether particular language properties hold. Determining the scope or extent of an

identifier is a typical name analysis problem. For example, in C, the placement of a



www.manaraa.com

50

variable’s declaration determines its scope. A variable declared outside a function has a

global scope, while a variable declared inside a function has a local scope. Each occur-

rence of an identifier in the input text is classified as either a define or a use occurrence.

An occurrence of an identifier within a declaration statement is a define occurrence,

while all other occurrences are of type use. Note that the identifier “grav” in Figure 5.1

occurs three times. The occurrences of “grav” in line 6 of Figure 5.1, which declares

“grav” to be a variable of type “double”, is a define occurrence. The occurrence of

identifier “grav” in lines 7 and 8 of Figure 5.1 represents use occurrences. The proper

classification of each occurrence and its scope allows the name analysis component to

determine whether an identifier is defined. Clearly the identifier “grav” is defined. The

identifier “y” in line 8 of Figure 5.1 is never defined and would therefore represent a

semantic error.

5.4.2 Type Analysis

The task of type analysis, like name analysis, performs computations on the nodes

of the abstract syntax tree to verify certain properties of the input text and provide more

information for subsequent phases of the compiler. Type analysis focuses on determin-

ing the type of an identifier and the implications of its type on additional computations.

The type of identifier “result3” in Figure 5.1 is “double”, as are the identifiers “best” and

“grav”. The type of “y” is unknown because it is never defined and is subsequently ig-

nored. A typical type analysis task verifies that the “*” operator is defined for operands

of type “double”. If the operator is not defined, type analysis determines whether the

operand can be converted or coerced. In addition to verifying certain language proper-

ties, type analysis also provides information for subsequent compiler phases. For the C

to assembly language compiler example, type analysis determines that a floating-point

instruction should be generated for line 8 of Figure 5.1 versus an integer instruction.



www.manaraa.com

51

5.4.3 Tree Parsing

Tree parsing is a semantic analysis task that involves the transformation of one

abstract syntax tree into another. The creation of a second abstract syntax tree is

useful when a particular computation is not well suited to the initial abstract syntax

tree. For example, consider a C to assembly language compiler. The structure of the

input language C differs significantly from the structure of the generated assembly code.

Tree parsing converts the input abstract syntax tree into a tree with a structure similar

to the assembly code. This transformation simplifies the computations necessary to

generate assembly code. Another application of tree parsing that addresses ambiguities

with input syntax is described in detail in Section 5.7.3.

5.5 Transformation

The final phase of a compiler is the transformation of the abstract syntax tree

representation into the output text. The output language may be the same as the input,

as in the case of the pretty printer application described in Section 5.4, or it may be a

separate language as in the C compiler example. The unparser component of a compiler

performs the transformation from tree form into a structured output. The form of the

text output for each node in the abstract syntax tree is based on the computations

performed during the semantic analysis phase.

5.6 Eli Compiler Construction Suite

The Eli compiler construction suite [50, 115] is a collection of tools that solve

particular tasks necessary for the construction of a compiler. The tools in the suite are

accessible through the use of several high-level specification languages. Using specifi-

cation languages reduces development time and simplifies maintenance of the resulting

compiler [96]. The specifications are converted by the toolkit into ANSI C code that is



www.manaraa.com

52

then compiled into an executable. Eli differs from products like lex and yacc [64] in that

it provides tools or modules for all phases of compiler development, not just the lexical

and syntactic analysis phases. In addition to providing tools for lexical and syntactic

analysis, Eli also provides tools to perform semantic analysis and transformation into

output text. Further, all tools are integrated into a single development environment.

While Eli provides numerous languages and their associated translators to de-

scribe particular compiler tasks, perhaps the most important is the LIDO language.

LIDO is the specification language in which all tree computations are described in Eli.

We describe several of LIDO’s fundamental programming constructs to clarify further

discussion of tree computations. At the highest level of abstraction is the symbol con-

struct. There are two types of symbols: a tree symbol, which represents a node in the

abstract syntax tree, and a class symbol, which is a computational method. Both types

of symbols contain a collection of objects. Both tree and class symbols can inherit a

class symbol and all associated objects. Objects consist of attributes, properties, and

computations. Attributes and properties are data structures on which computations

occur. Attributes apply to all nodes in a tree, while properties only apply to particular

nodes. Eli also provides centralized storage of properties.

Properties are data structures that are associated with particular nodes in the

abstract syntax tree. A fundamental property in Eli is the symbol id, an integer that

corresponds to a unique character string in the string table. A symbol id is generated

by the lexical scanner for each valid token added to the string table. When an identifier

is defined, the symbol id corresponding to the identifier is entered into the symbol table

and the symbol key is returned. A symbol key is a data structure that associates a

defined identifier with a scope.

A scope is the extent over which an identifier is defined. For example, consider

the case where two separate functions use a locally defined variable “tmp”. Because

each variable “tmp” has a scope local to its own function, the two declarations of “tmp”



www.manaraa.com

53

refer to different variables. While both “tmp” variables share a single symbol id, each

has an unique symbol key because of its unique scope. Properties are not limited to a

particular node in the abstract syntax tree. Eli’s centralized storage scheme for proper-

ties is indexed by the symbol keys. The property storage module is used to accumulate

information about the input text. For example, the number of times a symbol appears in

a particular context is determined by incrementing a counter associated with its symbol

key.

While attributes are data structures that are defined for all nodes in the abstract

syntax tree, they are only associated with nodes where they are used. A common

application of attributes is the generation of output text. Support for the generation

of output text in Eli is provided by associating a structure of type PTGNode to every

node of the abstract syntax tree. The PTGNode structure contains a string of characters

and a pointer to a formatting function. The form of the PTGNode structure for each

non-terminal node is determined by an attribute computation on the PTGNodes of its

children nodes. The PTGNode structure of the root node of the abstract syntax tree

contains the complete output text.

5.7 Matlab-Specific Difficulties

The weak typing and flexible syntax features of the Matlab language complicates

compiler development. The weak typing difficulties described in Section 5.1.2 are trou-

blesome only if Matlab is converted into a language with stronger typing like C or FOR-

TRAN. We avoid the Matlab type analysis problem in the SLAMM language processor

by not translating the input text into a stronger-typed language. Instead we transform

the original Matlab code into a second Matlab code with the addition of the statements

necessary to perform the memory analysis. Whenever possible, we use Matlab-specific

features to simplify the development and execution of the SLAMM language processor.

Unfortunately, the problems created by its flexible syntax are unavoidable and are de-



www.manaraa.com

54
b = [1 - 2 3],

b2 = [1 - 2, 3],

c = [1 -2 3],

c2 =[1, -2, 3],

Figure 5.3: Matlab code that illustrates the use of invisible commas

scribed in detail in the following sections. We first describe the difficulties encountered

in the lexical and syntactical analysis of Matlab in Sections 5.7.1 and 5.7.2. In Section

5.7.3, we describe the difficulties encountered in the name and type analysis phase and

how tree parsing is used to address the syntactical ambiguities.

5.7.1 Invisible Commas

A prime example of Matlab’s flexible syntax is seen in its use of commas. In

Matlab, commas are used to separate a list of items. For example, commas are used

to separate the indices of an array or the arguments to a function. Commas are also

used to separate individual Matlab statements for which the result should be printed to

standard output.

Further, Matlab supports a concept called invisible commas, where in certain

contexts, other tokens are syntactically equivalent to commas. For example, in the case

of statement separation, a newline character or several blank characters and a newline

are both equivalent to a comma. Another example of invisible comma usage in Matlab

is provided in Figure 5.3. Figure 5.3 is Matlab code that sets the variables b, b2, c, and

c2 to be arrays of integers where the variable b2 is equal to b and c2 is equal to c.

We examine the meaning of blank space in the case of the assignment of variable

c. Both occurrences of blank spaces, which are usually irrelevant, are syntactically

equivalent to a comma within the context of the brackets in line 3 of Figure 5.3. For

the assignment of the variable b in line 1 of Figure 5.3, the blank space between the

brackets has multiple meanings. In this case, the first two blank spaces are irrelevant,



www.manaraa.com

55

while the third is equivalent to a comma. The subtle and context-dependent meaning

of blank space in Matlab creates an invisible comma classification problem.

One possible way to address the invisible comma problem illustrated in Figure

5.3 is to define blank space as a terminal node in the abstract grammar. However, the

addition of such a node and the required associated context would significantly increase

the complexity of the abstract syntax tree. Instead of pushing the added complexity into

the syntax tree, we choose to address it by including additional token definitions during

lexical processing. Consider four different types of tokens: Blank, Neg, NegSpace, and

Integer. Token Blank is defined as one or more blank spaces; Neg is defined as a minus

sign; NegSpace is defined as zero or more blank spaces, a minus sign, then one or more

blank spaces; while Integer is defined as one or more integer characters. Consider the

order of tokens that are classified when parsing within the brackets for the assignment of

b in Figure 5.3. The first character “1” matches to an Integer token, while the next set

of characters “ - ” matches to a NegSpace token. Note that in the case where multiple

tokens match, the token classification with the greatest length is used. The next three

tokens are Integer, Blank, and Integer. With the match of the Blank token, a state

variable is checked to determine context. If it is enclosed in brackets, the Blank is

accepted by the abstract syntax as a comma. If the Blank token is not contained within

brackets, it is ignored.

A similar examination of the order of tokens classified when parsing within the

brackets for the assignment of c in Figure 5.3 reveals a key difference. The first character

“1” matches to an Integer token, while the next character matches to a Blank, followed by

a Neg token. The NegSpace token is not matched because in this case one or more blank

spaces do not trail the minus sign. The remaining tokens match as before. Because both

of the Blank tokens appear within brackets, they are properly classified as commas. The

use of additional token types during lexical analysis prevents the complexity of invisible

commas from affecting the form of the abstract syntax tree.



www.manaraa.com

56
b = a’

msg = ’This is a string constant’

Figure 5.4: Matlab code that illustrates the use of both transpose operators and string
constants.

5.7.2 Transpose Operator

In the previous section, we illustrated how the use of multiple different tokens to

represent a single component of the Matlab grammar causes difficulty for syntactical

analysis. We next examine the case where a single character, the apostrophe, is used

in semantically different constructs. A single apostrophe applied as a postfix to an

identifier is the Matlab transpose operator. String variables in Matlab, like Pascal, are

delimited by apostrophes. We illustrate the difficulty the dual use of the apostrophe

creates by examining a Matlab code in Figure 5.4 that includes both the transpose

operator and string variables.

It should be noted that the processing of a character string token occurs differ-

ently than for all other tokens. When a beginning delimiter is encountered, the text

scanner searches forward in the input text for the end delimiter, accepting all inter-

vening characters. A text scanner would therefore incorrectly interpret the transpose

operator in the first line of Figure 5.4 as the beginning delimiter of a character string

that concludes at the first apostrophe on the second line of Figure 5.4. A series of

identifier tokens would next be classified followed by an unterminated character string.

The resulting incorrectly constructed collection of input tokens would result in a syntax

error. To differentiate between a character string deliminator and a transpose operator,

we use a repair function.

The repair function “Reparatur” in Eli allows the reclassification of an input to-

ken. Recall from Section 5.2 that once a token is classified, it is passed to the syntactical

analysis processor, which either accepts it into the abstract syntax tree or rejects it and



www.manaraa.com

57
[a, b],

[a, b] = qr(A),

Figure 5.5: Matlab code that illustrates the multiple uses of brackets.

generates an error message. The repair function allows a token rejected by the syntac-

tical processor to be reclassified and the pointer to the input text to be reset. The text

scanner resumes input, and the reclassified tokens are passed again to the syntactical

analysis processor.

The apostrophe identification problem is addressed by classifying all apostrophe

characters as transpose operators with a secondary or repair classification as a string

constant. It is clear that the first apostrophe in line 1 of Figure 5.4 is correctly classified

as a transpose operator. The first apostrophe in line 2 of Figure 5.4 does not adhere

to the syntax rules for a transpose operator and results in a call to the repair function.

The subsequent reclassification of the token as the beginning deliminator of a character

string is correct and results in the formation of a correct abstract syntax tree.

5.7.3 Classification of Identifiers

Recall from Section 5.7.1 that we addressed the invisible comma problem by mov-

ing computations typically performed at a later compiler phase into an earlier phase

where we had sufficient information for proper classification. We next describe a tech-

nique that delays the construction of certain components of the abstract syntax tree to

a later compiler phase. The delayed construction of certain nodes in the abstract syntax

tree allows the correct classification of identifiers. As in previous sections, we begin by

providing a motivating example.

In Section 5.7.1, we illustrate one possible use of brackets in Matlab as an array

constructor. Brackets are also used in Matlab to delimit the output arguments of

function calls. Both uses of brackets are illustrated in Figure 5.5.



www.manaraa.com

58

The Matlab statement, in line 1 of Figure 5.5 requests that an array composed

of identifiers “a” and “b” be printed to standard output. Line 2 of Figure 5.5 indicates

that the identifiers “a” and “b” are the output arguments of the function “qr”. While

the first six characters of each line are identical, the occurrence of identifiers “a” and “b”

represent different semantic meanings in each line, which must be expressed differently

in the abstract syntax tree. In line 1 of Figure 5.5, the identifiers “a” and “b” are a

use occurrence, while in line 2 they are a define occurrence. Further, note that in order

for the identifier token “a” to be properly accepted by the syntactical processor, several

additional tokens must be scanned and classified, including the last comma in line 1

and the equal sign in line 2. However, the additional required tokens are not possible

because tokens are classified and accepted into the abstract syntax tree based on the

previous accepted tokens and a single lookahead token. Matlab’s use of brackets as

both array constructors and to delineate the output arguments of function calls creates

difficulties in the proper semantic analysis of identifiers.

We address the identifier classification problem by applying the tree parsing tech-

nique described in Section 5.4.3. While tree parsing is typically used to construct entirely

new abstract syntax trees, we only apply it to selected pieces of the existing tree. We

choose to apply tree parsing sparingly for several reasons. First, the output language is

the same as the input, so we have no fundamental need to create an additional syntax

tree. Second, the addition of a nearly identical abstract syntax tree would result in

an increase in the size of the necessary compiler specifications and a decrease in its

reliability and maintainability.

Our approach in cases in which the classification of identifiers is ambiguous, is

to accept the tokens as unknown identifier nodes. Once the initial abstract syntax

tree has been constructed, we parse the particular branches of the tree that contain

unknown identifiers to create a new tree branch. The new tree branch containing the

proper classification of the unknown identifiers is grafted into the original tree. All tree



www.manaraa.com

59

computations necessary for memory analysis and formation of the transformed output

text occur on the newly grafted branches.

5.8 Memory Analysis Computations

The techniques described in Section 5.7 address particular difficulties in the syntax

of Matlab. These techniques combine to provide an accurate representation of the input

text in abstract syntax tree form on which to base further computations. Additional tree

computations are primarily concerned with calculating memory analysis statistics by

using a combination of static and dynamic techniques. The SLAMM language processor

performs static analysis of the input text to generate additional code blocks for output

generation. The Matlab interpreter subsequently executes the transformed code to

complete the memory analysis. Memory analysis statistics include both the number of

times a variable is loaded from the memory hierarchy and the total storage requirement

for all variables.

Section 5.8.1 describes how the memory analysis statistics are based on inclu-

sive and exclusive counts of identifiers. While identifier counts provide a basis for the

memory analysis, several corrections must be applied to the base identifier counts. The

corrections necessary to improve the accuracy of the memory analysis are described in

Section 5.8.2. In Section 5.8.3, we describe the various code blocks that the SLAMM

language processor generates. In Section 5.8.4, we describe some code transformations

necessary to provide function support. Finally, in Section 5.8.5, we describe the memory

analysis output.

5.8.1 Inclusive and Exclusive Counting

Recall the concept of scope, which is the extent or range over which an identifier

is known. In Section 5.4.1, we described how scope is used to determine whether an

identifier is properly defined within a function or collection of functions. While this is



www.manaraa.com

60

the most common use of scope, it is not its only application. We consider using scope

over a much smaller range. For purposes of this discussion, we define a piece of code

with unique scope, even if it is as small a single statement, to be a body of code. Note

that because symbol keys are properties of a node, we can maintain the associated keys

for both the function and body applications of scope. Use of body level scoping allows

a fine-grain counting of particular program characteristics, providing the basis for all

memory analysis computations.

A Matlab code that contains multiple scopes is provided in Figure 5.6. Note that

we have indicated the unique scopes with the labels B0 to B3. SLAMM directives,

indicated by the prefix “%SLM”, are also included. The directives “%SLM start foo;”

and “%SLM end foo;” delimit and provide a symbolic name, in this case “foo”, to a

body of Matlab code on which to perform memory analysis. The third directive in

Figure 5.6 “%SLM print foo;” requests the printing of the memory analysis for body

“foo”. A complete description of all SLAMM directives is provided in Section 5.9. Note

that the directives create a separate nested scope B1 that is contained in the original

root scope B0. The “if” statement also defines two additional bodies, B2 and B3, nested

within body B1. The call to the Matlab function rand(1, 1) generates a single random

floating-point value between 0.0 and 1.0.

We next describe inclusive and exclusive counts for identifiers. An inclusive

identifier count is the number of times an identifier occurs in the current scope and

all included scopes. For example, the inclusive count for identifier “r” in the scope B1 is

equal to 1 because it occurs in the included scope B2. An exclusive identifier count

is the number of times an identifier occurs in the current scope. The exclusive count for

identifier “r” in the scope B1 is equal to 0 because “r” occurs only in the B0 and B2

scopes. Both types of identifier counts are calculated through the use of symbol keys.



www.manaraa.com

61

B 0

B 3
B 2

B 1
Figure 5.6: Matlab code that illustrates multiple scopes.



www.manaraa.com

62
n = size(A,1);

m = size(r_m1’*r);

alpha = r’*r;

r_m1 = r;

r = A * w;

Figure 5.7: Matlab code that illustrates the need for corrections to the base identifier
counts.

Because each scope and symbol id combination has a unique key, we easily determine

exclusive counts using a simple increment of an integer counter. Inclusive counts require

a somewhat subtler approach because the counters for both the current and all parent

scopes must be incremented. The total amount of storage required for a particular

body of code is determined by summing the storage requirement for all variables with

inclusive identifier counts greater or equal to one. However, the exclusive identifier

counts provide only an estimate of the number of times a variable is loaded from the

memory hierarchy. Several corrections to the identifier counts described in the next

section are necessary to accurately characterize data movement.

5.8.2 Corrections to Identifier Counts

The goal of the SLAMM language processor is to predict the data movement for

an efficiently implemented algorithm in a compiled language. While the use of identifier

counts as the basis of the memory analysis is a good approximation, as described in

the previous section, it is not always accurate. In particular, the occurrence of an

identifier does not necessarily indicate that the corresponding variable must be loaded

from the memory hierarchy. Fortunately, it is possible to improve the accuracy of the

base identifier counts through a series of corrections. These corrections represent a

translation from the literal analysis of the input Matlab code to an estimate of how the

code would be efficiently implemented in a compiled language. A small Matlab code is

provided in Figure 5.7 to motivate the discussion, where r, r m1, w ∈ R
n and A ∈ R

n×n.



www.manaraa.com

63

The first line of Figure 5.7 uses the built-in Matlab function size to set the

variable n to be extent of the first dimension of the matrix A. While line 1 of Figure 5.7

represents a use of identifier A, its implementation does not require access to the entire

matrix “A”. It is possible to provide the functionality necessary for line 1 in Figure

5.7 in a compiled language implementation by accessing a single integer variable. The

function call correction addresses the counting mismatch by decrementing the counts

for those identifiers that occur within a function call argument list. We are careful not

to decrement the count for those identifiers that occur in an expression in an argument

list. For example, the function call correction does not apply to those identifiers “r m1”

and “r” in line 2 of Figure 5.7.

The calculation of the dot product “alpha” in line 3 of Figure 5.7 represents the

need for another type of correction. In this case, the identifier “r” occurs twice in a

single expression. However, the vector r is only loaded once from the memory hierarchy.

The duplicate occurrence of “r” represents cache reuse that cannot be ignored in the

memory analysis calculations. To address cache reuse, we decrement the identifier counts

for any identifiers that occur multiple times within a single statement. The duplicate

correction does not address the possibility of cache reuse between multiple statements.

Line 4 of Figure 5.7 represents a copy of the vector r to vector r m1. Memory

copies are necessary in Matlab for renaming purposes because Matlab lacks a pointer

construct. Single variable assignments are implemented as either a memory copy or a

pointer assignment in a compiled language. We assume that for an efficiently implement

algorithm, variables with a large storage requirement, for example vectors, use pointer

assignments. Variables with a small storage requirement, for example a single floating-

point value, use memory copies. Because the cost of memory copy for small variables

is insignificant, we assume for the purposes of memory analysis that the assignment of

one variable to another is a pointer assignment. The copy correction decrements the

identifier counts to properly address pointer assignment.



www.manaraa.com

64

Line 5 of Figure 5.7 represents the need for a different form of correction. The

previous corrections involved decrementing counts to properly account for particular

identifier occurrences. Proper memory analysis of the statement on line 5 of Figure 5.7

requires additional information about the types of the “A” and “w” identifiers. For

example, if “A” is a sparse matrix, the amount of data movement, which is examined in

Section 6.2.3, is potentially larger than the sum of the storage requirements of “A” and

“w”. However, type-dependent computations are not possible for the SLAMM language

processor because it has no knowledge of type. Type information is only available

to the Matlab interpreter. We address our lack of type information by transforming

certain operators into function calls. We then apply the standard techniques developed

for functions described in Section 5.8.4. For example, to apply the special operator

correction to line 5 of Figure 5.7, we transform the expression r = Aw to the equivalent

r = mtimes(A,w). A profiled version of mtimes, described in Section 5.8.4, allows the

proper calculation of data movement based on the determination of type at runtime.

5.8.3 SLAMM Output

The SLAMM language processor generates output text, based on the results of the

tree computations described in Sections 5.8.1 and 5.8.2. The output text typically con-

tains the input text with the addition of various code blocks that calculate the memory

analysis. When the input text contains calls to certain functions, additional code trans-

formation is required. We next describe the case where no input code transformation is

required. This is followed by the transformation case in Section 5.8.4.

The SLAMM language processor generates several different types of additional

code blocks. We illustrate the types and placement of the code blocks that are generated

in Figure 5.8 if the Matlab code in Figure 5.6 is processed by the SLAMM language

processor. The oblong objects in Figure 5.8 represent code blocks added by the language

processor. We describe each type of code block in detail.



www.manaraa.com

65

A code block of type Header is inserted as a prefix to the original Matlab code. The

Header code block contains the definitions and initialization of Matlab structures used to

accumulate the information for each scope and identifier. A code block of type SizeOf

typically contains a single call to the Matlab whos function. The whos function returns a

structure that describes the type, extent, and required memory storage of its argument.

A SizeOf block is generated by SLAMM each time an identifier is assigned. When an

identifier requires definition through a SLAMM directive, a condition not present in

Figure 5.8, a SizeOf block is generated before the first use of the identifier. If the input

Matlab code includes access to a subsection of an array, a condition also not illustrated

in Figure 5.8, an additional statement in the SizeOf code block is necessary. Because the

whos function does not accept subscripted arrays as arguments, the array subsection is

first copied to a temporary variable whose characteristics are subsequently determined

by the whos function.

We next describe the contents of an exclusive memory analysis code block. In

particular we examine in detail the exclusive memory analysis block for the B2 body in

Figure 5.8. The generated Matlab code for body B2 is provided in Figure 5.9. Note that

the SizeOf block for the assignment of the identifier “new” is included for completeness

and that the “.” represents an access to a component of a Matlab structure. The

exclusive memory analysis code block in Figure 5.9 includes calculations for the size of

variables loaded from the memory hierarchy, as indicated by the structure field wsl, the

size of variables stored to the memory hierarchy wss, and the total storage size sr. The

bytes field of the structure created by the whos function is used to calculate the proper

values for wsl, wss, and sr. The string “ifLn5” is SLAMM’s name for the B2 body.

While all bodies of code require an exclusive memory analysis code block, only

those bodies that contain other bodies require an inclusive memory analysis code



www.manaraa.com

66

B 0

B 3
B 2

B 1

H e a d e r

E x c l u s i v e M e m o r y A n a l y s i s ( B 2 )
E x c l u s i v e M e m o r y A n a l y s i s ( B 3 )
E x c l u s i v e M e m o r y A n a l y s i s ( B 1 )

S i z e O f ( r )
S i z e O f ( b )

S i z e O f ( n e w )

I n c l u s i v e M e m o r y A n a l y s i s ( B 1 )

S i z e O f ( n e w )

P r i n t M e m o r y A n a l y s i s ( f o o )
Figure 5.8: A diagram of SLAMM output using the Matlab code in Figure 5.6 as input.



www.manaraa.com

67
new =[r,b,3];

[slm_new] = whos(’new’);

%---------------SLM memory Analysis ----------------------

% Exclusive memory analysis information

slm_ifLn5.wsl = slm_ifLn5.wsl + slm_b.bytes + slm_r.bytes;

slm_ifLn5.wss = slm_ifLn5.wss + slm_new.bytes;

% Total storage size

slm_ifLn5.sr = slm_b.bytes + slm_r.bytes + slm_new.bytes;

%-------------------------------------------------------;

Figure 5.9: The SLAMM generated exclusive memory analysis code block for scope B2
of Figure 5.6

.

block. The inclusive memory analysis code block for B1 contains the sum of all included

bodies for the fields wsl and wss. Note that the fields wsl and wss must be summed

because they are based on exclusive identifier counts. The value for sr, which is based

on an inclusive identifier count remains unchanged. Print memory analysis, the final

type of code block, consists of a call to the provided Matlab function SlmPrtAnalysis

with the proper structure as an argument. The form of the output of the Matlab

function SlmPrtAnalysis is described in the next section.

5.8.4 Functions

We next describe how SLAMM supports function calls. Using the techniques

described in Section 5.7.3, SLAMM differentiates between identifiers that correspond

to functions and identifiers that correspond to variables. Functions are further classi-

fied into those that provide a significant contribution to data movement versus those

that do not. We refer to those functions that provide a significant contribution to data

movement as profiled functions. SLAMM maintains the proper classification for a col-

lection of commonly used built-in Matlab functions. For example, the Matlab function

size, which determines the extent of a variable, does not contribute to data movement,



www.manaraa.com

68
[slm_L1C5, slm_sin__L1C5] = SLMsin(r);

[slm_L1C14,slm_cos__L1C14] = SLMcos(z);

t = slm_L1C5+slm_L1C14,

Figure 5.10: The SLAMM transformed Matlab code for the expression t = sin(r) +
cos(z).

however the function qr, which calculates the QR factorization of an input matrix does

contribute to data movement. SLAMM provides a directive for the classification for

user-supplied functions, as described in Section 5.9. We concentrate on two types of

code transformations necessary for profiled functions. The first type of transformation

involves changing the actual function call, while the second involves changes to the

function itself. We examine the function call transformation first.

SLAMM transforms a function call to a profiled function call by prefixing the

string “SLM” to the name of the function and adding an additional output argument

or return value. The additional output argument is a Matlab structure containing

the SLAMM calculated memory analysis. The profiled function’s contribution to data

movement is subsequently accumulated in the appropriate inclusive memory analysis

code block. For profiled functions that return multiple output arguments, the code

transformation only requires the addition of an extra output argument. For profiled

functions that return a single output argument, additional code transformation may be

necessary. For example, a single expression that uses the output argument of a profiled

function as an operand requires the generation of multiple sub-expressions. All sub-

expressions are linked by temporary variables. An example of the SLAMM transformed

Matlab for the expression t = sin(r) + cos(z), where r, z, t ∈ R
n is provided in Figure

5.10.

In Figure 5.10, the single original expression t = sin(r) + cos(z) is broken into

three separate statements. The temporary variables slm L1C5 and slm L1C14 are the



www.manaraa.com

69

original output arguments of the sin and cos functions respectively and are used to cal-

culate the expected result t. The structures slm sin L1C5 and slm cos L1C14 contain

the memory analysis for the sin and cos functions respectively. The transformation in

Figure 5.10 allows both the calculation of the correct result t and the proper memory

analysis.

We next describe the transformation of profiled functions. The function call trans-

formation requires the generation of new versions of the profiled functions. SLAMM

provides a collection of profiled functions for all necessary built-in Matlab functions. The

provided profiled functions consist of a call to the original function and the assignment of

the memory analysis structures. For user-supplied Matlab functions, the SLAMM lan-

guage processor generates the various memory analysis code blocks described in Section

5.8.3 and alters the name and output arguments appropriately.

5.8.5 Memory Analysis Output

The output of the supplied Matlab function SlmPrtAnalysis is the end result of

the automated memory analysis process. An example output is provide in Figure 5.11.

The first line of Figure 5.11 indicates that it is the memory analysis for a body of code

with name “Blgmres”. The next two lines provide the total storage requirement (SR)

and working set load size (WSL) in Mbytes. For the WSL prediction, a most likely

value and error bounds are provided. The error bounds address the inability of the

SLAMM language processor to accurately predict data movement for certain program-

ming constructions as described in detail in Chapter 6. The WSL value is subdivided

into different types of data movement. Dense matrix-matrix operations that can be im-

plemented as a call to the BLAS routine DGEMM [31] as well as those involving sparse

matrix-vector operations are indicated separately. SLAMM also provides a prediction

for the upper and lower bounds on execution time. The accuracy of both the WSL and

execution time predictions are analyzed throughly in Chapter 6.



www.manaraa.com

70
SLAMM Memory Analysis for Body: Blgmres

TOTAL: Storage Requirement Mbytes (SR) : 7.69

TOTAL: Loaded from L2 -> L1 Mbytes (WSL): 549.87 +- 10.01

DGEMM Mbytes : 0.00 +- 0.00

Sparse Ops Mbytes : 129.18 +- 10.01

Predicted etime for SUN Ultra II msec: [580.418 3311.795]

Figure 5.11: The output of a call to the SlmPrtAnalysis function.

5.9 Using the SLAMM Language Processor

Finally, we provide an operational description of the user interface to the SLAMM

language processor. The SLAMM language processor consists of an executable program

and a collection of utility functions written in Matlab. ANSI C source code for the

SLAMM executable was generated by the Eli compiler construction suite described

in Section 5.6. The actions of the language processor are controlled by a collection

of directives. All SLAMM directives include a prefix, a command, and a terminating

semicolon. The prefix %SLM is treated by the Matlab interpreter as a comment. The

command component of the directive consists of a keyword followed by one or more

parameters. The legal keyword and parameter combinations are:

{Start | FuncStart | End | FuncEnd} SymName Directives with the Start and

End keywords delineate the beginning and ending of a body of Matlab code.

Similarly, directives with the FuncStart and FuncEnd keywords delineate the

beginning and end of a Matlab function. SLAMM requires that the first line

of all input Matlab scripts or functions contains a Start or FuncStart directive

respectively. Similarly, SLAMM requires that the last line of all input Matlab

scripts or functions contains an End or FuncEnd directive respectively. Corre-

sponding Start and End directives are matched using the SymName parameter.

The SymName parameter is a user-supplied name and allows easy identification

of pieces of code.



www.manaraa.com

71

Var {VarName | VarNameList, VarName} The Var directive provides the ability

to classify one or more identifiers as variables. The VarName parameter is the

name of the variable. The VarNameList parameter is one or more VarName

parameters separated by a comma.

{ Func | IncFunc } { FuncName | FuncNameList, FuncName} Directives with

the Func keyword classify a function identifier for which data movement is ig-

nored, while the IncFunc keyword indicates profiled functions that contain sig-

nificant data movement. The FuncName parameter is the name of the function.

The FuncNameList parameter is one or more FuncName parameters separated

by a comma.

Print SymName The Print directive requests that a Print Memory Analysis code

block for the body SymName be generated. The Print directive must be placed

outside the scope of the SymName code body.

The SLAMM language processor is accessed from either the UNIX command

line or through the Matlab interpreter. Command line access is particularly useful

for generating the profiled functions described in the previous section. SLAMM is

accessed through the Matlab interpreter by calling the supplied function slmexe. The

slmexe function has a single input argument, a string variable containing the name of

the Matlab script. The slmexe function spawns a shell process that executes SLAMM

on the input Matlab script and subsequently executes the output using the Matlab

interpreter.

The computational cost to perform a SLAMM memory analysis has two com-

ponents: the cost to process the input text and the overhead of the memory analysis

calculation code. The cost to process the input text is minimal and typically requires

several tenths of a second. The SLAMM generated code however typically increases the

Matlab execution time by a factor of 2 to 10. The more extensively the input Matlab



www.manaraa.com

72

uses array subscripting, the larger the overhead. Ironically, the SLAMM generated Mat-

lab has an increased execution time due to the large number of memory copies SLAMM

generates to properly predict data movement.



www.manaraa.com

Chapter 6

Automated Memory Analysis

We demonstrated in Chapter 4 that a manual line-by-line memory analysis of a

mathematical description of a Krylov iterative algorithm predicts the differences in data

movement for two different implementations. In particular, we predict the performance

of a multivector versus non-multivector based implementation by comparing ratios for

the working set size and measured data movement. Furthermore, we are able to observe

a strong correlation between the ratios of data movement through the memory hierarchy

and execution time. However, manual memory analysis is time consuming, laborious,

and error prone process. Our results are a proof of concept of the importance of memory

analysis, not a general solution.

In Chapter 5, we described the development of the SLAMM language proces-

sor that automates the memory analysis procedure. The SLAMM language processor

accepts Matlab code as input and outputs a modified version. The modified Matlab

output code contains both the original code and new blocks of code that calculate the

memory usage properties.

The SLAMM-based memory analysis represents a significant advance over man-

ual memory analysis in terms of both speed and accuracy. A manual memory analysis

that might require as long as multiple days is now achieved in 20 minutes by SLAMM.

Further, the language processor accurately predicts actual data movement through the

lowest level of the memory hierarchy for most input code. For the remainder of the



www.manaraa.com

74

chapter, we examine the accuracy of SLAMM-based memory analysis by evaluating a

collection of benchmarks. Additionally, we provide examples of how to use SLAMM to

assist algorithm design and implementation. In Section 6.1, we describe our approach

to the validation process, including the compute platforms, test methodology, and test

matrices. In Section 6.2, we evaluate the ability of SLAMM to properly analyze lin-

ear algebra computational kernels. In Section 6.3, we examine several different Matlab

subroutines that implement the Conjugate Gradient algorithm and determine if dif-

ferent coding styles affect the accuracy of the SLAMM memory analysis. In Section

6.4, we examine a trio of GMRES algorithms. The standard restarted GMRES(m),

LGMRES(m,s), and B-LGMRES(m,s) variants are all analyzed.

6.1 Test Configuration

To evaluate the accuracy of SLAMM-based memory analysis, we compare the

predicted data movement for a benchmark written in Matlab to the actual data move-

ment for the corresponding benchmark written in C. We use PETSc 2.1.6 (Argonne

National Laboratory’s Portable, Extensible Toolkit for Scientific Computation) to pro-

vide a high-performance, single-processor implementation of the various benchmarks.

Whenever possible, we configure PETSc to take advantage of optimized math libraries.

We instrument the benchmark C code with the locally developed performance profiling

library Htrace, which is based on the PAPI hardware performance counter API [81].

Htrace calculates data movement by tracking the number of cache lines moved through

the different components of the memory hierarchy. We focus on three primary micropro-

cessor compute platforms that provide counters for cache lines loaded from the memory

hierarchy to the L1 cache: Sun Ultra II [74] (Ultra II), IBM POWER 4 [16] (Pwr4),

and MIPS R14K [113] (R14K). We include two additional compute platforms, which

do not provide hardware counters of cache lines loaded from the memory hierarchy to

the L1 cache, Intel P4 Xeon [23, 24] (P4), and the Motorola G4 (G4) to determine if



www.manaraa.com

75

we can predict execution time based on the SLAMM-predicted data movement. These

five compute platforms represent a wide range of cache sizes, system bandwidths, and

execution rates. A description of the cache configurations for each compute platform is

provided in Table 6.1.

Table 6.1: Description of the microprocessor compute platforms and their cache con-
figurations. The total size of the cache (size), length of cache line (cline), associativity
(assoc), and location of the cache (loc) is provided (if known).

CPU Ultra II Pwr4 R14K P4 G4
Company SUN IBM SGI Intel Motorola
Version 7447A

Mhz 400 1300 500 2000 1500

L1 D-cache size 32KB 32KB 32KB 8KB 32KB
cline 16 bytes 128 bytes 32 bytes 64 bytes –
assoc – 2-way 2-way 4way –
loc on-die on-die on-die on-die on-die

L2 cache size 4 MB 1440 KB 8 MB 512 KB 512 KB
cline 64 bytes 128 bytes 128 bytes 64 bytes –
assoc 8-way 2-way 8-way –
loc off-die on-die off-die on-die on-die

L3 cache size – 32 MB – – –
line – 512 bytes – – –

assoc – 8-way – – –
loc – off-die – – –

Because the SLAMM language processor has limited accuracy under certain con-

ditions, we provide error bounds in addition for the predicted values. To simplify pre-

sentation, we report only the predicted value of data loaded from the memory hierarchy

to the L1 cache (MbytesL1) for comparison with the measured value.

In addition to the prediction of MbytesL1, we also examine the ability of the

SLAMM language processor to accurately predict execution time. Execution time pre-

diction is based on the assumption that the cost of data movement through the memory

hierarchy dominates execution time. It also assumes that the cost of data movement

is determined by memory bandwidth. While a valid assumption for certain codes, this

simplification neglects a host of other factors, including memory latency, TLB misses,

floating-point costs, and the quality of the executables instruction stream. Execution



www.manaraa.com

76

time prediction is further complicated by the fact that the SLAMM language proces-

sor has no general technique to accurately determine the location of a operand in the

memory hierarchy.

We can, however, estimate bounds on the execution time. The lower bound

represents the lowest execution time the algorithm could achieve, in which case all data

loaded from the memory hierarchy is located in the L2 cache. The equation

TL = MbytesL1/bandwidthL2, (6.1)

where bandwidthL2 corresponds to the load bandwidth between the L1 and L2 cache

represents this case. The upper bound corresponds to the case where all data loaded

from L2 to L1 is located in the compute platform’s main memory. The upper bound is

calculated using the equation

TU = MbytesL1/bandwidthMM , (6.2)

where bandwidthMM corresponds to the load bandwidth between the L1 cache and main

memory.

We experimentally determine bandwidthL2 and bandwidthMM for each compute

platform using a test code similar to the STREAMS benchmark [71]. The test code

times the execution of the axpy operation x = x + αy, where x, y ∈ R
n and α ∈ R.

The value of n is chosen such that sizeof(cacheL1) < SRaxpy < sizeof(cacheL2) − 2 ×

sizeof(cacheL1), where SRaxpy is the total storage requirement for the axpy operation.

To determine bandwidthL2, a single axpy operation is executed followed by a flush of the

L1 cache. The L1 cache is flushed by accessing and modifying a variable besides x, y,

or α whose storage requirement is twice the size of the L1 cache. While it is possible

that small pieces of x and y may be removed from the L2 cache and flushed to main

memory, it is highly unlikely that a significant amount is displaced because L2 caches

are typically significantly larger than L1 caches. With the variables x, y, and α located



www.manaraa.com

77

in the L2 cache, a second axpy operation is timed. We calculated bandwidthL2 based

on the average of 400 timings. The value for bandwidthMM is calculated in the same

fashion, except all caches are flushed prior to the execution of the second axpy. Table

6.2 provides the experimentally determined bandwidths for each compute platform in

Mbytes/sec based on an axpy with vectors of dimension 12000.

Table 6.2: Experimentally determined memory hierarchy bandwidths for each compute
platform in Mbytes/sec.

Ultra II Pwr4 R14K P4 G4

bandwidthL2 870 8200 1400 7800 2100
bandwidthMM 170 1500 420 850 420

The execution time bound provides a rough estimate on which to judge the mem-

ory efficiency of a particular implementation of a Matlab algorithm. A compiled imple-

mentation of an algorithm with an execution time greater than the upper bound has

significant performance problems. A matrix-matrix multiplication, containing nested

loops that do not respect storage order is a common example of this type of imple-

mentation. Conversely, an implementation with an execution time near or equal to the

lower bound is extremely memory efficient. The memory efficiency of an implementation

whose execution time lies near the middle of the bounds can not be inferred.

We use input matrices from the University of Florida Sparse Matrix Collection

[27] and the Matrix Market Collection [77]. The s1rmq4m1b matrix was created by

removing the several hundred explicitly stored zero values in the original s1rmq4m1

matrix.

.

6.2 Fundamental Linear Algebra Operations

We begin our evaluation of the accuracy of SLAMM memory analysis by examin-

ing several linear algebra kernel benchmarks. We chose the kernel benchmarks because



www.manaraa.com

78

Table 6.3: List of test problems with the matrix order (n), number of nonzeros (nnz),
matrix density (ρ), and description of the application area (if known).

Matrix n nnz ρ Application Area

nos5 468 5172 2.4e-2 finite element approximation of building
gr3030 900 7744 9.6e-3 nine point stencil on a 30 x 30 grid
sherman5 3312 20793 1.9e-3 fully implicit oil simulator
pesa 11738 79566 5.7e-4
epb1 14734 95053 4.3e-4 heat exchanger simulation
ex15 6867 98671 2.1e-3 3-D fluid flow
memplus 17758 126150 4.0e-4 digital circuit simulation
zhao2 33861 166453 1.4e-4 electromagnetic systems
epb2 25288 175027 2.7e-4 heat exchanger simulation
wang3 26064 177168 2.6e-4 electron continuity for 3D diode
s1rmq4m1b 5489 262411 8.7e-3 cylindrical shell 30x30 quad mesh
bcsstk17 10974 428650 3.6e-3 stiffness matrix - elevated pressure vessel
finan512 74752 596992 1.1e-4 financial portfolio optimization

they form the basis of all linear algebra algorithms. Different inputs for each kernel

benchmark are selected such that the storage requirement is larger than the L1 cache

for all compute platforms. We first examine vector kernel benchmarks in Section 6.2.1.

Next we examine two benchmarks with matrices as operands: a dense matrix benchmark

in Section 6.2.2 and a sparse matrix benchmark in Section 6.2.3.

6.2.1 Vector Benchmarks

We create four kernel benchmarks to test the ability of SLAMM to properly

analyze dense linear algebra with vector operands. The benchmarks are DotProd, Axpy,

Maxpy, and Combo. The DotProd benchmark calculates the dot product of two

disjoint vectors: α = (x, y), where x, y ∈ R
n, and α ∈ R. The Axpy benchmark

calculates x = x + αy, where x, y ∈ R
n, and α ∈ R. The Maxpy benchmark calculates

x = x + yz, where x ∈ R
n, y ∈ R

n×s, and z ∈ R
s. The Combo benchmark contains

two common linear algebra operations and calculates α = (r, r) and x = x + αy, where

r, x, y ∈ R
n and α ∈ R.

The DotProd, Axpy, and Maxpy benchmarks involve the streaming of operands

from the memory hierarchy to the processor with no possibility of reuse. A streaming



www.manaraa.com

79

access pattern should be easily analyzed by the SLAMM language processor. In the case

of the Combo benchmark, the reuse of the vector r complicates the analysis. However,

the proper recognition of data reuse is achieved by the duplicate identifier correction

described in Section 5.8.2.

Each benchmark is executed for several different values of n, and both the L1 and

L2 caches are flushed to prevent L1 reuse. The SLAMM-predicted value of MbytesL1,

the working set load size (WSLP ), the measured value (WSLM) in Kbytes, and the

corresponding relative error for each input size and benchmark are provided in Table

6.4. There is some variability between the measured values for different compute plat-

forms. For example, WSLM ranges from 397 to 468 Kbytes when n = 12000 for the

Axpy benchmark. To account for the compute platform variability, we consider any pre-

diction within 20% of measured to be an accurate prediction for MbytesL1. With the

exception of the Combo benchmark on the Pwr4 platform for n = 24576, all predicted

and measured values for MbytesL1 agree within 20%. The reason for the lone discrep-

ancy is unclear but may be related to the particular value of n that contains a large

power of 2 (1024) as one of its factors. As expected, SLAMM successfully recognizes

the reuse of r in the Combo benchmark.

Given the ability of the SLAMM language processor to accurately predict MbytesL1

for the dense linear algebra kernel benchmarks, we now examine the accuracy of execu-

tion time prediction. Recall that in general, execution time prediction is inherently inac-

curate because SLAMM has no information about the location of the required variables

in the memory hierarchy. However, we can use the cache flushing techniques described

in Section 6.1 to predict execution time under controlled conditions. To evaluate the

upper bound on execution time, we flush all caches prior to timing the benchmark. All

variables required by the benchmarks are therefore located in the main memory. To

evaluate the lower bound, we initially warm the caches followed by a flush of the L1

cache. As a result, all variables required by the benchmarks are located in the L2 cache.



www.manaraa.com

80

Table 6.4: MbytesL1 for the vector kernel benchmarks. WSLP , calculated by the
SLAMM language processor and measured values of WSLM are in Kbytes.

Ultra II Pwr4 R14K
OP n WSLP WSLM err WSLM err WSLM err

DotProd 3000 46.9 49.7 -5.6% 53 -11.5% 51 -8.0%
7000 109.4 114.2 -4.2% 105.1 4.1% 115.1 -5.0%
24576 384 398.8 -3.7% 451.6 -15.0% 396.2 -3.1%

Axpy 3000 46.9 49.7 -5.6% 54.1 -13.3% 51.4 -8.8%
7000 109.4 114.2 -4.2% 108.9 0.5% 115.4 -5.2%
12000 187.5 194 -3.4% 199.1 -5.8% 195.2 -3.9%
24576 384 397 -3.3% 468.2 -18.0% 396.6 -3.2%

Maxpy 3000 117.2 122.9 -4.6% 118.1 -0.8% 125.3 -6.5%
7000 273.5 338.3 -19.2% 249.7 9.5% 283.4 -3.5%

(s=4) 1200 468.8 482.6 -2.9% 451.4 3.9% 483.6 -3.1%
24576 960 987.6 -2.8% 851.3 12.8% 986.6 -2.7%

Combo 3000 70.3 74.3 -5.4% 72.9 -3.6% 76.1 -7.6%
7000 164.1 171.1 -4.1% 150.6 9.0% 172.3 -4.8%
12000 281.3 290.6 -3.2% 275 2.3% 292.2 -3.7%
24576 576 596.2 -3.4% 1185 -51.4% 594.1 -3.0%

We examine the overall accuracy of execution time prediction for all dense linear

algebra benchmarks first, followed by a detailed look at some specific instances. While

we expect the upper bound on execution time to be accurately predicted for all bench-

mark input set combinations, we expect only those benchmarks with sufficiently small

storage requirements to be accurately predicted for the lower bound. In particular, we

expect any benchmark with

SR < sizeof(cacheL2) − 2 × sizeof(cacheL1), (6.3)

where 2 × sizeof(cacheL1) accounts for the storage requirement of the array used to

flush the L1 cache, to be accurately predicted. Using the measured bandwidths for each

compute platform from Table 6.2 as input, SLAMM predicts the upper bound (TU )

and a lower bound (TL) on execution time. We compare the measured execution time

(TM ) to the SLAMM predictions for each benchmark where (6.3) holds. In Table 6.5,

we provide a percentage of execution times predicted to within 20% error for all five

compute platforms. For example, Table 6.5, indicates that on the P4 compute platform,

93% of the TU values the all benchmarks are predicted within 20% error.



www.manaraa.com

81

Table 6.5: Overall accuracy of execution time prediction for the vector benchmarks.

Accurately Predicted
TL TU

Ultra II 47% 100%
Pwr4 53% 73%
R14K 69% 93%

P4 80% 93%
G4 54% 100%

Total 61% 92%

Table 6.5 indicates that the overall accuracy for the upper bound on execution

time is excellent for all but the Pwr4 compute platform. The upper bounds on execution

time is accurately predicted for all benchmarks on the G4, a compute platform for

which we have no ability to measure data movement. The overall accuracy of the

lower bound with the exception of the P4 is marginal. However, the total accuracy

across all platforms indicates that, while the prediction of execution time is not entirely

trustworthy, it does appear to work in general. We next examine some specific instances

of the execution time prediction.

The predicted upper bound on execution time (TU ) and actual execution time

(TM ) for each of the vector linear algebra benchmarks and the relative errors for all

five compute platforms are provided in Table 6.6. For two of the compute platforms,

Ultra II and G4, the predicted and measured execution time agree to within 9% for

all benchmark and input size combinations. The execution time predictions for the

P4 are nearly as accurate, exceeding the 20% accuracy threshold for only the Combo

benchmark for n = 24576. However, TU is not as accurate for the R14K and Pwr4

compute platforms. For the R14K, the measured execution time is outside the accuracy

threshold for three benchmarks with the relative error ranging from −21 to 23%. We

also observe accuracy errors larger than the acceptable threshold for the small input

sets for the DotProd, Axpy, and Combo benchmarks for the Pwr4 compute platform.



www.manaraa.com

82

Despite these discrepancies, the upper bound on execution calculated by SLAMM is

accurate for 92% of the benchmark, input set, and compute platform combinations.

The predicted lower bound (TL) and measured (TM ) execution time for each of

the vector benchmarks for all five compute platforms and the relative error are provided

in Table 6.7. We include only values that we expect to be accurately predicted based

on (6.3). While the goal of SLAMM-based memory analysis is not to explain the pecu-

larities of a particular compute platform, it is useful to examine specific results in detail

to verify correct operation. We therefore examine the accuracy of the execution time

prediction in detail for the Ultra II and Pwr4 compute platforms.

We begin with the Ultra II. Interestingly, two of the benchmarks, DotProd and

Axpy, have consistently low relative errors (2-4%), while the other two benchmarks,

Maxpy and Combo, have consistently high relative errors (46% and 21% respectively).

Examination of the PETSc source reveals that the DotProd and Axpy benchmarks are

implemented as calls to vendor-optimized versions of BLAS subroutines for the Ultra

II. The Maxpy benchmark is implemented in source code, which is likely less optimized

than either the DotProd or Axpy benchmarks. As a result, the execution time of Maxpy

is greater than the SLAMM-predicted value, which is based on experimental timings

of an axpy operation. Similary, the Combo benchmark, which is composed of two

separate calls to optimized BLAS subroutines, also have execution times greater than

predicted by SLAMM due to subroutine call overhead. It is therefore apparent that the

discrepancies between predicted and measured execution time for the Ultra II are due

to implementation-specific details and not to the prediction methodology.

As with the Ultra II, the Pwr4 compute platform implements all benchmarks

in a similar manner. It is therefore not surprising that the relative error for the Pwr4

platform is consistently high for both the Maxpy and Combo benchmarks as well. In ad-

dition, the higher-than-expected execution times for the Pwr4 on the Axpy and Combo

benchmarks for n = 24576 are consistent the with correspondingly higher-than-expected



www.manaraa.com

83

value for MbytesL1 shown in Table 6.4.

6.2.2 Dense Matrix Benchmark

The MxM benchmark is the multiplication of two long skinny matrices Z = XT Y

where X,Y ∈ R
n×s, and Z ∈ R

s×s. We choose s = 4 as a typical configuration en-

countered in block Krylov methods. It is possible to implement the PETSc version of

MxM benchmark as a call to either the BLAS DGEMM subroutine [31] or a handwrit-

ten subroutine that takes advantage of the particular size of the operands. In Table

6.8 we provide the SLAMM predicted value (WSLP ) and the measured MbytesL1 for a

vendor optimized BLAS DGEMM subroutine (WSLB
M ) and a handwritten subroutine

(WSLH
M ). The handwritten implementation corresponds to the VecStrideDOT subrou-

tine described in Section 4.2.

Table 6.8 indicates that SLAMM predicts MbytesL1 to within 9% error for the

handwritten implementation of the MxM benchmark. However, SLAMM does not ac-

curately predict MbytesL1 for the BLAS implementation of the MxM benchmark for

both the Ultra II and Pwr4 compute platforms. The BLAS implementation of the MxM

benchmark requires 15 to 25% and 38 to 44% more data movement than necessary on

the Ultra II and Pwr4 compute platforms, respectively. The BLAS implementation on

the R14K and the handwritten version of MxM are memory-efficient because they load

only the minimum amount of data from the memory hierarchy. We believe that the

additional data movement required on the Ultra II and Pwr4 compute platforms is due

to cache conflict misses in the L1 cache.

For larger values of s the compute platform dependence of WSLM for the MxM

benchmark becomes even more pronounced. For example for n = 4500 and s = 20,

the SLAMM predicted value WSLP = 1406 Kbytes is significantly different than the

measured values of 2777, 7968, and 10822 Kbytes for the BLAS implementation of MxM

benchmark on the Ultra II, Pwr4 and R14K compute platforms, respectively.



www.manaraa.com

84

Table 6.6: The predicted upper bound (TU ) versus measured execution time (TM ) in µsec for the vector benchmarks.

n SR Ultra II Pwr4 R14K P4 G4
OP Kbytes TM TU err TM TU err TM TU err TM TU err TM TU err

DotProd 3000 46.9 .292 .276 5% .047 .030 36% .126 .110 13% .056 .055 2% .114 .112 2%
7000 109.4 .665 .643 3% .066 .071 -8% .275 .257 7% .125 .129 -3% .257 .260 -1%
24576 384 2.251 2.259 0% .181 .248 -37% .869 .904 -4% .409 .452 -11% .892 .914 -2%

Axpy 3000 46.9 .288 .276 4% .046 .030 35% .123 .110 11% .059 .055 7% .104 .112 -8%
7000 109.4 .651 .643 1% .082 .071 13% .248 .257 -4% .135 .129 4% .258 .260 -1%
12000 187.5 1.113 1.103 1% .121 .121 0% .442 .441 0% .222 .221 0% .451 .446 1%
24576 384 2.249 2.259 0% .247 .248 0% .749 .904 -21% .416 .452 -9% .944 .914 3%

Maxpy 3000 117.2 .682 .690 -1% .078 .076 3% .359 .276 23% .141 .138 2% .273 .279 -2%
7000 273.5 1.625 1.609 1% .147 .176 -20% .803 .643 20% .337 .322 4% .651 .651 0%

(s=4) 12000 468.8 2.722 2.758 -1% .251 .302 -20% 1.366 1.103 19% .577 .552 4% 1.105 1.116 -1%
24576 960 5.532 5.647 -2% .542 .619 -14% 2.740 2.259 18% 1.050 1.129 -8% 2.286 2.286 0%

Combo 3000 70.3 .452 .414 8% .069 .045 35% .188 .165 12% .080 .083 -4% .173 .167 3%
7000 164.1 1.011 .965 5% .119 .106 11% .402 .386 4% .176 .193 -10% .413 .391 5%
12000 281.3 1.708 1.654 3% .171 .181 -6% .665 .662 0% .301 .331 -10% .688 .670 3%
24576 576 3.450 3.388 2% .379 .372 2% 1.343 1.355 -1% .562 .678 -21% 1.467 1.371 7%



www.manaraa.com

85

Table 6.7: The predicted lower bound (TL) versus measured execution time (TM ) in µsec for the vector benchmarks.

n SR Ultra II Pwr4 R14K P4 G4
OP Kbytes TM TL err TM TL err TM TL err TM TL err TM TL err

DotProd 3000 46.9 .050 .048 4% .006 .006 0% .031 .034 -10% .007 .006 14% .021 .022 -5%
7000 109.4 .115 .113 2% .012 .013 -8% .054 .080 -48% .016 .014 13% .046 .052 -13%
24576 384 .411 .396 4% .047 .045 4% .141 .282 -100% .058 .050 14% .270 .183 32%

Axpy 3000 46.9 .050 .048 4% .007 .006 14% .042 .034 19% .007 .006 14% .029 .022 24%
7000 109.4 .115 .113 2% .013 .013 0% .086 .080 7% .015 .014 7% .058 .052 10%
12000 187.5 .197 .193 2% .022 .022 0% .138 .138 0% .025 .024 4% .089 .089 0%
24576 384 .412 .396 4% .084 .045 46% .282 .282 8% .062 .050 19% .216 .183 15%

Maxpy 3000 117.2 .226 .121 46% .032 .014 56% .103 .086 17% .014 .015 -7% .077 .056 27%
7000 273.5 .527 .282 46% .073 .032 56% .225 .201 11% .033 .035 -6% .165 .130 21%

(s=4) 12000 468.8 .908 .483 47% .125 .055 56% .371 .345 7% .120 .061 49%
24576 960 1.864 .990 47% .262 .113 57% .797 .706 11%

Combo 3000 70.3 .092 .072 22% .011 .008 27% .054 .052 4% .013 .009 31% .044 .033 25%
7000 164.1 .213 .169 21% .023 .019 17% .116 .121 -4% .030 .021 30% .084 .078 7%
12000 281.3 .369 .290 21% .038 .033 13% .196 .207 -6% .052 .037 29% .167 .134 20%
24576 576 .762 .594 22% .143 .068 52% .388 .424 -9%



www.manaraa.com

86

Table 6.8: MbytesL1 for the MxM benchmark. WSLP , calculated by the SLAMM
language processor and the measured value for the BLAS (WSLB

M ) and hand opti-
mized (WSLH

M) implementations are in Kbytes. Relative error between predicted and
measured is provided in parenthesis.

size Ultra II Pwr4 R14K
n,s=4 WSLP WSLB

M WSLH
M WSLB

M WSLH
M WSLB

M WSLH
M

3000 188 223 (-16%) 193 (-3%) 332 (-44%) 207 (-9%) 199 (-6%) 195 (-4%)
7000 438 583 (-25%) 452 (-3%) 750 (-42%) 463 (-5%) 455 (-4%) 452 (-3%)
12000 750 884 (-15%) 773 (-3%) 1265 (-41%) 771 (-3%) 775 (-3%) 772 (-3%)
24000 1500 1756 (-15%) 1546 (-3%) 2422 (-38%) 1444 (4%) 1543 (-3%) 1539 (-2%)
24576 1536 1836 (-16%) 1583 (-3%) 2471 (-38%) 1492 (3%) 1579 (-3%) 1576 (-2%)

Because the aim of SLAMM is to predict data movement for a memory-efficient

implementation, we provide both a prediction of the minimum required data movement

and an estimate of the additional data movement required due to L1 cache conflicts. We

approximate cache conflicts in the MxM benchmark, by assuming they cause an addi-

tional load of the X and Y operands from the L2 cache. Tighter bounds for the required

data movement could be estimated using ATLAS [116]. While the SLAMM language

processor does not provide an accurate estimate of MbytesL1 for dense matrix matrix

multiplication at this time, it does indicate the relative impact an memory-efficient

dense matrix-matrix multiply subroutine may have on an algorithm’s implementation.

6.2.3 Sparse Matrix Benchmark

We use the MxV benchmark to characterize sparse linear algebra computations.

The MxV benchmark is the multiplication of a sparse matrix times a vector y = Ax,

where x, y ∈ R
n and A ∈ R

n×n. Similar to the vector benchmarks, the MxV benchmark

involves the streaming of data from the memory hierarchy into the processor with little

chance of reuse. Unlike the vector benchmarks that impose a stride-one access pattern,

the MxV benchmark includes indirect addressing as well.

We examine the MxV benchmark using 13 different input matrices whose total

storage requirements range from 70 Kbytes to more than 8 Mbytes in size. The accurate



www.manaraa.com

87

prediction of MbytesL1 for the MxV benchmark is nontrivial in that it is dependent on

the structure of the nonzero pattern of the A matrix. In particular, the loading of the x

vector and storing of the resulting y vector may interfere in the cache. Further, the use

of indirect addressing for the x vector may result in a larger MbytesL1 than necessary

due to inefficient use of cache lines. While the interaction of nonzero patterns and cache

size on data movement was analyzed by Temam and Jalby [102], we require a simpler

approach. In particular, we do not want the analysis of the nonzero pattern of A to

significantly increase the execution time of the SLAMM-transformed code. Based on

an examination of experimentally measured MbytesL1, we therefore approximate the

impact the nonzero pattern on data movement for the MxV benchmark by adding an

additional vector of length n to WSLP . This approximation is reasonably accurate

across the entire set of input matrices. The total storage requirement, the predicted

and measured MbytesL1, and the relative error for each input matrix for each primary

compute platform are provided in Table 6.9.

Table 6.9: MbytesL1 for the MxV benchmark. SR and WSLP , calculated by the
SLAMM language processor, and the measured values of WSLM are in Kbytes.

Ultra II Pwr4 R14K
matrix SR WSLP WSLM err WSLM err WSLM err

nos5 70 70 73.4 2.5% 77.5 -3.0% 75.5 -0.4%
gr3030 108 108 110.3 7.9% 111 7.2% 115.4 3.1%

sherman5 308 308 322 -4.3% 292.9 5.2% 339.7 -9.3%
pesa 1162 1162 1441 -17.6% 1521 -23.6% 1517 -23.4%
epb1 1402 1402 1483 -5.5% 1403 -0.1% 1530 -8.4%
ex15 1290 1290 1267 1.8% 1298 -0.6% 1272 1.4%

memplus 1825 1825 2150 -15.1% 2308 -20.9% 2235 -18.3%
zhao2 2612 2612 3197 -18.3% 3321 -21.3% 3411 -23.4%
epb2 2544 2544 2848 -10.7% 2679 -5.0% 2786 -8.7%

wang3 2585 2585 2948 -12.3% 2583 0.1% 3064 -15.6%
s1rmq4m1b 3182 3182 3216 1.0% 3324 -2.3% 3135 3.6%
bcsstk17 5238 5238 4816 11.4% 4871 10.2% 4752 12.9%
finan512 8456 8456 9314 -9.2% 8578 -1.4% 9319 -9.3%

Table 6.9 reveals that WSLM is consistent between the three compute platforms,

and that in general, the SLAMM language processor accurately predicts MbytesL1



www.manaraa.com

88

within 20% error with only a few exceptions. For example, the predicted values for

MbytesL1 are less accurate for the pesa, memplus, and zhao2 input matrices, where they

are 20-25% too low for several platforms. The remaining matrices for which the pre-

dictions are within the 20% threshold are either consistently low (wang3 and finan512),

consistently high (gr3030 and bcsstk17), or within the compute platform’s variability of

WSLM (sherman5, s1rmq3m1b, nos5, and ex15). We therefore conclude that SLAMM,

in general, predicts MbytesL1 within 20% of measured for the MxV benchmark. The

largest source of error is dependent on the nonzero pattern of the matrix. We address

the matrix-dependent uncertainty with the addition of error bounds.

We establish in the previous section that the SLAMM language processor can

accurately predict an upper bound on execution time for 92% of the dense linear algebra

benchmarks. Unlike the dense kernel benchmarks, with the MxV benchmark, we do not

have control over the placement or size of the required variables. We can, however, verify

that the measured execution time is contained within the upper and lower bounds of

the predicted execution time. In contrast to previous benchmarks, we time the MxV

benchmark without flushing cache and use the average execution time for 100 matrix

vector multiplies. The measured and predicted bounds on execution time are provided

in Table 6.10. The measured execution time is contained within the predicted bounds

for 62 of 65 possible input matrix and compute platform combinations. Two of the

discrepancies, the s1rmq4m1b matrix on the R14K and the finan512 matrix on the

G4 have TM that are outside the predicted range by an insignificant 2.5% and 2.2%

respectively. The third discrepancy, where the TM for the zhao2 matrix is 17.5% greater

than expected on the G4 compute platform, is consistent with the low prediction for

MbytesL1 in Table 6.9.

The results presented in this section demonstrate that the SLAMM language

processor accurately predicts MbytesL1 to within 20% for most dense linear algebra

benchmarks with vector operands. The only exceptions are due to particular input size



www.manaraa.com

89

Table 6.10: The measured (TM ), predicted lower bound (TL), and upper bound (TU ) on execution time in µsec for the MxV benchmark.

Matrix SR Ultra II Pwr4 R14K P4 G4
Kbytes TM TL TU TM TL TU TM TL TU TM TL TU TM TL TU

pesa 1162 3.69 1.20 6.83 .48 .14 .75 1.19 .85 2.73 .67 .15 1.37 2.47 .55 2.77
wang3 2585 8.06 2.66 15.21 1.14 .30 1.67 2.60 1.90 6.08 1.50 .33 3.04 5.77 1.23 6.16

memplus 1825 4.73 1.88 10.74 .90 .21 1.18 1.88 1.34 4.29 1.12 .23 2.15 4.15 .87 4.35
sherman5 308 .75 .32 1.81 .13 .04 .20 .30 .23 .73 .08 .04 .36 .21 .15 .73
bcsstk17 5238 6.51 5.53 31.57 2.24 .63 3.46 8.63 3.95 12.63 3.85 .69 6.31 10.61 2.56 12.78

s1rmq4m1b 3182 3.37 3.35 19.10 1.32 .38 2.09 2.33 2.39 7.64 2.30 .42 3.82 7.23 1.55 7.73
nos5 70 .20 .08 .44 .03 .01 .05 .07 .06 .18 .02 .01 .09 .04 .04 1.79

gr3030 108 .33 .12 .70 .04 .01 .08 .10 .09 .28 .02 .02 .14 .06 .06 .28
ex15 1290 2.29 1.33 7.60 .41 .15 .83 1.01 .95 3.04 .73 .16 1.52 2.81 .61 3.07

finan512 8456 32.91 8.72 49.74 4.08 .99 5.45 13.58 6.22 19.90 6.05 1.08 9.95 20.57 4.03 20.13
epb1 1402 4.33 1.44 8.25 0.60 .17 .90 1.35 1.03 3.30 .79 .18 1.65 3.36 .67 3.36
epb2 2544 8.66 2.62 15.00 1.14 .30 1.64 2.68 1.87 5.99 1.46 .33 2.99 5.68 1.21 6.06
zhao2 2612 8.31 2.69 15.36 1.30 .31 1.68 3.22 1.92 6.15 1.95 .34 3.07 7.31 1.24 6.22



www.manaraa.com

90

and compute platform combinations that interact negatively with the cache configura-

tions. The ability to accurately predict MbytesL1 for the MxM benchmark is limited by

the compute platform and implementation variability. It was also demonstrated that in

general SLAMM predicts MbytesL1 accurately for the sparse matrix-vector multiplica-

tion as well. These results provide the foundation on which to examine complete Krylov

iterative algorithms, which are composed of basic linear algebra operations.

6.3 Conjugate Gradient

Based on the successful prediction of MbytesL1 for the kernel benchmarks, we

next examine the ability of SLAMM to accurately predict an entire Krylov subspace

algorithm. We examine the Conjugate Gradient algorithm first because it is a simple

combination of the fundamental linear algebra operations described in the previous

section. Because the cost of the Conjugate Gradient algorithm is dominated by the cost

of the sparse matrix vector multiply, we expect SLAMM to predict data movement with

an accuracy similar to that of the MxV benchmark. Before we evaluate the accuracy of

SLAMM on the CG benchmark for a collection of input matrices, we first determine if

the accuracy of the memory analysis is dependent on a particular Matlab programming

style. We evaluate the impact of programming style in Section 6.3.1 by comparing the

results from three different CG implementations. Next we evaluate the accuracy for a

single CG subroutine on a selection of input matrices in Section 6.3.2. Finally, in Section

6.3.3, we analyze the cost of one particular feature of one of the CG subroutines.

6.3.1 Programming Style

We evaluate the impact of programming style on accuracy by comparing the

results obtained on three Matlab codes written by different authors who implemented

the same non-preconditioned CG algorithm. We demonstrate that the four corrections

described in Section 5.8.2 eliminate the impact of programming style on the accuracy



www.manaraa.com

91

of the memory analysis. The three Matlab codes selected are: Pcg, the standard

CG routine supplied by MathWorks; CgNL, a simple CG routine from the templates

collection [14] available from the Netlib repository [78]; and Mycg, a CG routine written

by the author. We modify all CG codes with the addition of a handful of SLAMM

directives to control memory analysis. The Pcg code includes an optional parameter for

the specification of a preconditioner. The CgNL version requires a preconditioner for

correct execution. The Mycg version does not support preconditioning. For consistency,

the CgNL code was modified to support an optional preconditioner. A single if statement

was added to the Pcg code to remove the execution of a stagnation test not present in

any of the other CG codes in Matlab or PETSc. Information on the three Matlab codes,

including author, number of source lines, and number of lines modified to performed

the memory analysis is provided in Table 6.11.

Table 6.11: Code statistics for several CG algorithms written in Matlab.

Source Lines Modifications
Name Author Original Final %SLM Other

Pcg MathWorks 312 334 5 17

CgNL Netlib/templates 66 81 6 13

Mycg J. Dennis 36 36 5 0

To evaluate programming style, we chose a single input matrix: s1rmq4m1b.

We compare the average measured MbytesL1 for all three compute platforms of 41.1

Mbytes to the predicted value for the three Matlab codes for several different SLAMM

configurations. Different SLAMM configurations include different combinations of the

memory analysis corrections described in Section 5.8.2. We present the predictions of

SLAMM in MbytesL1 and the relative error for five different configurations in Table

6.12. The abreviations used for the memory analysis corrections in Table 6.12 are: for

function calls (fcall), for duplicate identifiers (dup), for copy removal (copy), and for

special operator transformations (sops). Table 6.12 indicates that the fcall correction has



www.manaraa.com

92

the largest impact on the Pcg code, reducing the error from 14.8 to -1.6%. The reason

for this large improvement in accuracy is due to Pcg’s matrix-free support. The Pcg

code allows its first argument “A” to be either a sparse matrix or a pointer to a function

call. The Pcg code therefore uses a large number of utility function calls to determine

the nature of the argument “A.” The application of the fcall correction therefore allows

SLAMM to accurately predict MbytesL1. The remaining corrections do not, for this

set of Matlab codes, have as significant an impact on accuracy. However, the inclusion

of all four corrections does provide the most consistent estimate of MbytesL1 for all

three Matlab codes. We use configuration 5 for all remaining analyses because this

configuration allows the SLAMM language processor to be insensitive to programming

style.

Table 6.12: Impact of various corrections to baseline memory analysis for CG algorithm
with the s1rmq4m1b matrix. The average of measured value WSLM for each primary
compute platform of 41.1 Mbytes is used for comparison.

Corrections Pcg CgNL Mycg
config fcall dup copy sops WSLP err WSLP err WSLP err

1 47.17 14.8% 40.03 -2.6% 39.61 -3.6%

2 x 40.45 -1.6% 39.53 -3.8% 39.19 -4.6%

3 x x 40.45 -1.6% 39.53 -3.8% 38.73 -5.8%

4 x x x 39.07 -4.9% 39.06 -5.0% 38.69 -5.9%

5 x x x x 39.53 -3.8% 39.53 -3.8% 39.61 -3.6%

6.3.2 Accuracy for CG

We next examine the ability of SLAMM to accurately predict MbytesL1 for the

CG benchmark on a collection of input matrices. We chose to analyze the Pcg code

supplied by MathWorks, which includes an optional stagnation test, whose impact is

determined in the next section. We analyze Pcg on a collection of input matrices whose

total storage requirement of a single vector of length n is greater than the size of the

L1 cache. The predicted and measured MbytesL1 for 10 iterations of the Conjugate



www.manaraa.com

93

Gradient algorithm in Mbytes, and the relative error for the three primary compute

platforms are provided in Table 6.13.

Table 6.13: MbytesL1 for CG benchmark for 10 iterations. SR and WSLP , calculated
by SLAMM, and measured values of WSLM are in Mbytes.

Ultra II Pwr4 R14K
matrix SR WSLP WSLM err WSLM err WSLM err

ex15 1.5 19.68 20.80 -5.4% 21.8 -9.7% 21.8 -9.7%
s1rmq4m1b 3.3 39.61 40.8 -2.9% 41.9 -5.5% 40.7 -2.7%
bcsstk17 5.6 66.94 64.0 4.6% 63.2 5.9% 64.6 3.6%
finan512 10.5 154.1 176.2 -12.6% 170.0 -9.4% 186.2 -17.2%

Because the cost of the sparse matrix vector product dominates the total cost of

the CG algorithm, the accuracy of the CG prediction is similar to the accuracy of the

MxV benchmark for the corresponding matrices. In particular, finan512 the matrix for

which the MbytesL1 is low for the MxV benchmark, has a corresponding low MbytesL1

as well for the CG benchmark. However, the relative errors for all input matrices on all

compute platforms are within the threshold of 20%.

6.3.3 Stagnation Test

In the previous section, we demonstrated that the SLAMM language processor

accurately predicts MbytesL1 for the CG benchmark. We now examine how SLAMM is

used to evaluate the impact of a particular algorithm feature. As mentioned in Section

6.3.1, the Pcg subroutine contains a test for stagnation of the solution. The stagnation

test is included to check that the update to the new approximate solution αjpj in line

5 from Figure 3.1 has a norm greater than machine epsilon. Without this property, the

accuracy of the approximate solution xj+1 never changes. While the stagnation test is

present in the Pcg code written in Matlab, it is not present in the PETSc implementation

of Conjugate Gradient. We use SLAMM to analyze the cost of the stagnation test in

data movement. Table 6.14 contains the predicted MbytesL1 with and without the

stagnation test in Pcg as well as the percentage increase for MbytesL1 for all input



www.manaraa.com

94

matrices. Table 6.14 indicates that the stagnation test increases MbytesL1 by 5 to 16%.

The impact of the stagnation test is related to matrix density (ρ) which is provide in

Table 6.3. The stagnation test has the lowest impact for the s1rmq4m1b matrix, which

has the highest matrix density (ρ = 8.7e − 3), and the greatest impact for the finan512

matrix, which has the lowest matrix density (ρ = 1.1e − 4).

Table 6.14: Predicted increase in MbytesL1 for stagnation test in Pcg version of CG.

Stagnation Test
matrix without with increase

ex15 19.68 21.93 11.4%
s1rmq4m1b 39.53 41.33 4.6%
bcsstk17 66.94 70.54 5.4%
finan512 154.1 178.7 15.9%

6.4 Generalized Minimal Residual Methods

Unlike the Conjugate Gradient algorithm, the restarted GMRES(m) algorithm,

where m is the restart size, is not necessarily dominated by the cost of a sparse matrix-

vector multiply but rather has a significant cost associated with vector computations.

Because of the increased presence of vector operations, we expected the GMRES(m)

benchmark to be more accurately predicted by SLAMM than is the CG benchmark.

The Matlab codes for this section are: GmresNL, a GMRES code downloaded from

the Netlib repository; Gmres, a GMRES code supplied by MathWorks; Lgmres, a

LGMRES code that uses QR factorization to approximate the residual; LgmresROT,

a LGMRES code that uses Givens rotation to approximate the residual; and Blgmres, a

Matlab version of the B-LGMRES block algorithm [9]. The three LGMRES codes were

supplied by Baker [7]. All codes are modified through the addition of SLAMM directives.

Additionally, the GmresNL code was modified to include an optional preconditioner as

with the corresponding CG code. Several lines of the Gmres code were modified to

address a difficulty with the recognition of cache reuse for array notation. Optional



www.manaraa.com

95

components of the Lgmres and LgmresROT codes were turned off to match the PETSc

versions. Table 6.15 provides a listing of the author of the code, the original number of

lines, the final number of lines, and the number of lines modified with SLAMM directives

and for other reasons.

Table 6.15: Code statistics of a family of GMRES algorithms written in Matlab. For
the GMRES(30) algorithm, the type of Arnoldi process are indicated as either modified
Gram-Schmidt (MGS) or Householder (House).

Source Lines Modifications
Algorithm Author Original Final %SLM Other

GmresNL GMRES(30) Netlib 93 136 7 40
w/ ILU (MGS)

Gmres GMRES(30) Mathworks 472 491 10 11
w/ ILU (House)

Lgmres LGMRES(29,1) A. Baker 195 202 5 8

LgmresROT LGMRES(29,1) A. Baker 187 192 5 3

Blgmres B-LGMRES(15,1) A. Baker 149 155 5 3

6.4.1 GMRES

We use the GmresNL code to evaluate the accuracy of the SLAMM memory

analysis because both the GmresNL code and the PETSc supplied GMRES are based on

the same Arnoldi process. The Mathworks Gmres code uses a different Arnoldi process

which impacts data movement. We evaluate the accuracy of the SLAMM memory

analysis for the GMRES benchmark first, followed by an examination of the cost of

different Arnoldi implementations.

As with the previous benchmarks, we execute the GMRES benchmark multiple

times to reduce the impact of system variation and flush all caches prior to each exe-

cution. We record the cache line movement for one restart cycle of GMRES(30). The

measured and predicted MbytesL1 and relative error for the GMRES(30) benchmark

both with and without an incomplete LU factorization preconditioner are provided in

Table 6.16 for a collection of input matrices. Note that the preconditioned results in



www.manaraa.com

96

Table 6.16 include MBytesL1 only for the application of the preconditioner and not for

its calculation. As expected Table 6.16 indicates that SLAMM predicts data movement

within 13% error.

Table 6.16: MbytesL1 for one restart cycle of the GMRES(30) benchmark. SR and
WSLP , calculated by the SLAMM language processor, and measured WSLM are in
Mbytes.

Ultra II Pwr4 R14K
matrix precon SR WSLP WSLM err WSLM err WSLM err

pesa - 10.6 213.0 232.0 -8.2% 245.2 -13.1% 239.2 -11.0%
memplus - 16.1 324.6 351.8 -7.7% 363.7 -10.8% 359.5 -9.7%

epb1 - 13.3 265.7 281.8 -5.7% 283.9 -6.4% 289.7 -7.3%
zhao2 - 29.9 590.9 642.3 -8.0% 590.9 0.0% 657.7 -10.2%
epb2 - 22.9 459.5 492.4 -6.7% 440.0 4.4% 498.7 -7.9%

wang3 ILU(0) 28.1 662.9 663.2 0.0% 687.2 -3.5% 696.4 -4.8%
sherman5 ILU(0) 3.5 82.4 78.1 5.6% 90.1 -8.5% 73.9 11.5%

epb1 ILU(0) 15.7 369.0 359.9 2.5% 379.6 -2.8% 373.3 -1.1%
epb2 ILU(0) 27.4 645.7 635.8 1.6% 654.7 -1.4% 656.3 -1.6%

Having verified that SLAMM accurately predicts MbytesL1 for the GMRES(30)

algorithm, we now evaluate the impact certain algorithm design choices have on MbytesL1.

In particular, we determine the impact of the choice of Arnoldi process on the MbytesL1

for GMRES(30). The Arnoldi process in the GmresNL code is based on modified Gram-

Schmidt, while the Gmres code is Householder based. The Householder variant, while

more accurate, does require additional flops [91]. The SLAMM language processor can

analyze the cost in data movement. The predicted MbytesL1 for the modified Gram-

Schmidt and Householder variants are provided in Table 6.17.

Note that the additional cost of the MGS-based versus the Householder-based

Arnoldi process is consistent for all input matrices. Table 6.17 indicates that the House-

holder variant requires approximately 14% more data movement for non-preconditioned

GMRES(30) and 11% more data movement for preconditioned GMRES(30).



www.manaraa.com

97

Table 6.17: Predicted increase in MbytesL1 for Gram-Schmidt versus Householder based
GMRES(30).

Arnoldi Process
Matrix Precon MGS Householder Increase

pesa - 213.0 242.0 14%
memplus - 265.7 302.0 14%

epb1 - 324.6 368.5 13%
zhao2 - 590.9 675.5 14%
epb2 - 459.5 521.9 14%

sherman5 ILU(0) 82.4 91.5 11%
wang3 ILU(0) 662.9 734.5 11%
epb1 ILU(0) 369.0 409.6 11%
epb2 ILU(0) 645.7 714.8 11%

6.4.2 LGMRES

We next examine LGMRES(m,s), a GMRES variant developed by Baker [10].

LGMRES(m,s), which augments the Krylov subspace with error approximation vec-

tors, is described briefly in Section 3.4. The LgmresROT code, which is used in the

comparison with the PETSc version of LGMRES, estimates the residual using Givens

rotations, while the Lgmres version uses a QR factorization of the Hessenberg matrix.

We evaluate the accuracy of the SLAMM memory analysis first, followed by a compar-

ison between the two residual estimation schemes.

We record the cache line movement for one restart cycle of LGMRES(29,1). The

measured and predicted MbytesL1 and relative error for the LGMRES(29,1) benchmark

are provided in Table 6.18 for a collection of input matrices. We provide results only

for non-preconditioned problems because we have previously established that precondi-

tioning does not affect the accuracy of the memory analysis. As with the GMRES(30)

benchmark, SLAMM accurately predicts MbytesL1 for LGMRES(29,1) to within 11%

error.

We now examine the impact of residual estimation on data movement. The GM-

RES algorithm does not explicitly provide the residual for each iteration. The residual

is approximated using either a QR factorization of the Hessenberg matrix or Givens ro-



www.manaraa.com

98

Table 6.18: MbytesL1 for one restart cycle of the LGMRES(29,1) benchmark. SR and
WSLP , calculated by the SLAMM language processork, and measured WSLM are in
Mbytes.

Ultra II Pwr4 R14K
Matrix SR WSLP WSLM err WSLM err WSLM err

pesa 4.4 215.8 233.8 -7.7% 246.3 -12.4% 241.9 -10.8%
epb1 5.5 269.1 284.6 -5.5% 286.9 -6.2% 290.5 -7.4%

memplus 6.8 328.6 354.7 -7.4% 366.7 -10.4% 363.6 -9.6%
zhao2 12.1 598.6 648.9 -7.7% 600.3 -0.3% 666.1 -10.1%
epb2 9.6 465.3 496.9 -6.4% 447.1 4.1% 504.6 -7.8%

tations. Givens rotations replace the more expensive factorization with multiplication

by small 2x2 rotation matrices. The impact of the Givens rotations on data move-

ment is easily quantified with the SLAMM language processor for the LGMRES(29,1)

algorithm. In Table 6.19, we compare the predicted MbytesL1 for the Lgmres code,

which is based on the QR factorization, versus the LgmresROT code, which is based on

the Givens rotations. It is apparent from Table 6.19 that the Givens rotations have a

significant impact on data movement, reducing total MbytesL1 by approximately 17%.

Table 6.19: Predicted decrease in MbytesL1 for a Givens rotation versus a QR factor-
ization for residual estimation in the LGMRES(29,1) algorithm.

Residual Estimation
Matrix QR fact Givens rot decrease

pesa 259.9 215.8 17.0%
epb1 324.4 269.1 17.1%

memplus 395.4 328.7 16.9%
zhao2 725.9 598.6 17.5%
epb2 560.1 465.3 16.9%

6.4.3 B-LGMRES

Finally, we examine B-LGMRES(m,s), a block version of the LGMRES(m,s) al-

gorithm, which is described in Section 3.4. This is the same iterative algorithm for

which the manual memory analysis is described in Chapter 4. We revisit the algorithm

to verify the accuracy of the SLAMM-based memory analysis.



www.manaraa.com

99

We provide both the predicted and measured MbytesL1 for the B-LGMRES(15,1)

algorithm and the relative accuracy for each of the primary compute platforms in Table

6.20. The results in Table 6.20 demonstrate that as with all the other GMRES variants,

the SLAMM language processor accurately predicts MbytesL1 within 20% accuracy for

the B-LGMRES(15,1) benchmark.

Table 6.20: MbytesL1 for one restart cycle of the B-LGMRES(15,1) benchmark. SR and
WSLP , calculated by the SLAMM language processor, and measured values of WSLM

are in Mbytes.

Ultra II Pwr4 R14K
Matrix SR WSLP WSLM err WSLM err WSLM err

pesa 3.5 237.6 280 -15.1% 285 -16.6% 289 -17.7%
epb1 4.3 295.4 336 -12.1% 318 -7.1% 342 -13.6%

memplus 5.3 362.8 426 -14.8% 427 -15.0% 435 -16.6%
zhao2 9.3 647.6 781 -17.1% 729 -11.1% 805 -19.5%
epb2 7.5 512.9 588 -12.7% 551 -6.9% 597 -14.1%



www.manaraa.com

Chapter 7

Reducing Solver Costs in HOMME

Chapter 6 revealed that the automated memory analysis provided by the SLAMM

language processor accurately predicts MbytesL1 for both simple linear algebra kernels

and complete iterative algorithms. We next provide a case study on how we apply

SLAMM to examine the impact of different solvers on data movement in the Higher Or-

der Method Modeling Environment (HOMME) [105]. HOMME is a prototype spectral

element atmospheric model that uses a preconditioned Conjugate Gradient algorithm

to solve a Helmholz problem for each vertical level. The existing Helmholtz problem is

modified to isolate the vertical and horizontal components, which allows the use of the

multishifted Conjugate Gradient (mCG) algorithm described in Section 3.2. The mCG

algorithm allows the use of a single level independent preconditioner, which has the

potential to reduce data movement. Unfortunately, HOMME currently supports only

an inexpensive diagonal scaled preconditioner and therefore mCG does not significantly

reduce data movement versus the existing CG solver.

However, recent developments indicate that a restrictive optimized Schwarz pre-

conditioner significantly reduces iteration counts in HOMME versus the diagonal scaled

preconditioner. Because we anticipate significant changes to the HOMME solver, we

apply SLAMM to predict the impact on data movement of a multishifted solver and a

nonsymmetric solver in HOMME. Because the implementation of a multishifted non-

symmetric solver in HOMME is beyond the scope of this thesis, we evaluate the mCG



www.manaraa.com

101

solver as an example of a multishifted solver.

We first describe the Helmholtz problem and the modifications necessary to take

advantage of mCG algorithm in Section 7.1. In Section 7.2, we present numerical results

for HOMME based on the existing CG and mCG algorithms. In Sections 7.3.1 and 7.3.2,

we provide a case study of how SLAMM is used to reduce data movement of the mCG

algorithm. Finally, in Section 7.3.3, we predict the impact of several nonsymmetric

Krylov algorithms on data movement in HOMME.

7.1 HOMME

The spectral element method is a promising horizontal discretization scheme for

the construction of dynamical cores of climate models. The computational domain is

subdivided into spectral elements where the model fields are approximated by high order

polynomials. C0 continuity is imposed along element boundaries that share degrees

of freedom. In HOMME, which is based on the spectral element atmospheric model

originally developed by Taylor et al. [101], the sphere is tiled with rectangular elements

by subdividing the six faces of the cube that circumscribes the sphere, then a gnomonic

projection maps these elements onto the surface of the sphere.

The cubed-sphere computational domain is illustrated in Figure 7.1, where each

cube face contains an array of Ne×Ne quadrilateral spectral elements. Global variables

are defined on a single pressure grid (N2
p grid points per spectral element). The semi-

implicit, time-stepping version of HOMME, which is based on a combination of Crank-

Nicholson and an explicit leap frog scheme, uses a preconditioned CG algorithm to solve

a “Helmholtz like” problem for a horizontal level that contains a total of 6 × N2
e × N2

p

grid points. Note that this is not a proper Helmholtz problem because we never form the

Laplacian, but rather a “Laplacian-like” operator. With a slight abuse of convention,

we refer to the “Helmholtz-like” problem as the Helmholtz problem hereafter.

There are several versions of the vertical formulation. We concentrate on the



www.manaraa.com

102

Figure 7.1: The cubed-sphere with continental outline for Ne = 8

primitive equation version [37] that contains multiple coupled vertical levels discretized

with a finite difference approximation. We do not provide a derivation of the linearized

Helmholtz operator for the primitive equations, but rather refer the interested reader

to [105]. Instead, we concentrate on two different forms of the Helmholtz problem. The

mass form of the Helmholtz problem (mForm) for the kth vertical level is

(M− ∆t2λkM∇2)Γk = MCk, (7.1)

where ∆t is the timestep in seconds, λk is an eigenvalue of the vertical structure matrix,

M is the mass matrix, Γk is a generalized pressure variable, and Ck ∈ R
6Ne

2Np
2

is

defined in [105]. Note that the level-dependent variables are subscripted by k.

The structure of (7.1) is however not compatible with the mCG algorithm because

the horizontal and vertical components of the Helmholtz problem are not separated.

While it is possible to separate the horizontal and vertical components by factoring

out the mass matrix, preliminary numerical results indicate the mass matrix acts as a

preconditioner for the system. However, because M−1 exists, it is possible to use right



www.manaraa.com

103

preconditioning to transform (7.1) into

(I − ∆t2λkM∇2M−1)Γ̃k = MCk, (7.2)

where Γ̃k = MΓk. A Helmholtz problem suitable for the mCG algorithm is obtained by

dividing (7.2) by ∆t2λk to obtain the shifted form (sForm) of the Helmholtz problem

(σ̃kI −M∇2M−1)Γ̃k = MC̃k, (7.3)

where σ̃k = 1/∆t2λk and C̃k = σ̃kCk.

7.2 Numerical Impact of mCG Solver in HOMME

We next examine if a mCG-based HOMME correctly reproduces an atmospheric

test problem. The Polvani-Scott-Thomas (PST) baroclinic instability test problem [85]

simulates the impact of gravity waves in an atmospheric flow over 12 model days. The

reproducibility of the PST test problem is useful for evaluating and debugging atmo-

spheric dynamical cores. We examine the PST test problem using both the CG and

mCG solvers. For the remainder of the chapter, the Conjugate Gradient algorithm refers

to the merged inner-product Conjugate Gradient algorithm provided in Figure 3.2.

We execute the baroclinic instability test problem at a resolution of Ne = 5,

Np = 8, and nlev = 20 with ∆t = 720 seconds using a scaled diagonal preconditioner.

Each timestep involves both a linear solve for each vertical level and the associated

update of the governing equations. Formal convergence of the PST test problem is

achieved when the norm of the vorticity (‖ ζ ‖2) or angular momentum of the flow

at the surface after 12 days equals 7.8E − 6. Additionally, a converged solution also

reproduces a particular structure in a plot of the surface vorticity. While the Ne = 5

resolution is slightly lower than the Ne = 9 resolution necessary for formal convergence

of the PST test problem, it is sufficient to test solver characteristics while minimizing

computational costs. Note that for the remainder of the section, convergence refers to



www.manaraa.com

104

the convergence of HOMME to a physically valid solution and not to the convergence

of the iterative solver.

To determine the maximum solver tolerance necessary to achieve convergence, we

apply a test suggested by Smolarkiewicz [97]. In particular, we calculate the norm of

the divergence (‖ ∇ ‖2) of the flow at 12 days for different solver tolerances. We expect

that as the solver tolerance is decreased, ‖ ∇ ‖2 converges to a single value. A plot of

‖ ∇ ‖2 as a function of solver tolerance is provided in Figure 7.2 for the mForm (7.1)

and sForm (7.3) of the Helmholtz problem using the CG solver and for the sForm of the

Helmholtz problem using the mCG solver. The plot in Figure 7.2 illustrates that both

the CG and mCG solvers using a scaled diagonal preconditioner converge to a single

value for ‖ ∇ ‖2. We use a solver tolerance of 1E − 7 because a solver tolerance lower

than 1E − 7 does not significantly improve the quality of the simulation.

10
−12

10
−10

10
−8

10
−6

10
−4

1.2

1.25

1.3

1.35

1.4

1.45
x 10

−6
|| ∇  ||

2
 at day 12 of baroclinic instability test (Np=8, Ne=5)

Solver Tolerance

|| 
∇

 ||
2

mForm, Diag, CG
sForm, Diag, CG
sForm, Diag, mCG

Figure 7.2: The norm of the divergence (‖ ∇ ‖2) at the surface at day 12 for HOMME
at resolution Ne = 5, Np = 8, and nlev = 20 for the both CG and mCG algorithms.

We next calculate the norm of the vorticity at the surface after 12 days. For both

iterative solvers ‖ ζ ‖2= 8.0E − 6, which is sufficiently close to the converged value of

7.8E − 6 and indicates that both the CG and mCG algorithms generate comparable

solutions. For further verification of the mCG algorithm, we plot surface vorticity.



www.manaraa.com

105

Figure 7.3: The surface vorticity at day 12 for HOMME at resolution Ne = 5, Np = 8,
and nlev = 20 with the shifted form of the Helmholtz problem using the mCG solver.

Figure 7.3 contains a plot of surface vorticity with contours from −7.5 to 7.5× 10−5s−1

in steps of 1×10−5s−1 after 12 days of simulation using the mCG algorithm. Figure 7.3

matches the equivalent plot in [85], which is sufficient confirmation that a mCG-based

HOMME successfully reproduces the baroclinic instability test problem.

7.3 Alternative Krylov Solvers in HOMME

In the previous section, we verify that HOMME reproduces a standard atmo-

spheric test problem using either the CG or mCG solver. We next determine whether

the mCG algorithm allows a reduction in data movement over the CG algorithm. The

mCG algorithm potentially reduces data movement because it requires only a single

coefficient matrix and preconditioner.

Because the mCG algorithm does not require a linear system for each shift value

or vertical level, it avoids the need for multiple coefficient matrices. This feature offers

a significant reduction in data movement for the matrix-vector product when the coef-

ficient matrices are explicitly stored in memory. However, HOMME uses a matrix-free

implementation that applies functions to calculate the matrix-vector product. Further,



www.manaraa.com

106

the matrix-free implementation prevents the calculation of the new coefficient matrix

Ã = AM in Figure 3.3 necessary for right preconditioning at initialization. Instead, the

preconditioner M in Figure 3.3 must be applied at each Krylov iteration. Consequently,

the mCG matrix-vector product is more expensive than the CG matrix-vector product

in HOMME.

The mCG algorithm also allows the use of a single preconditioner for all shift

values if the preconditioner maintains the shifted structure. This feature may have a

significant impact on data movement if the cost of applying the preconditioner is con-

siderable. Because HOMME currently supports only a scaled diagonal preconditioner,

which is inexpensive to apply, we do not expect the mCG algorithm to provide any

reduction in execution time for HOMME at this time. However, recent developments

by St-Cyr [100, 99] indicate that a restrictive optimized Schwarz preconditioner (o-

Schwarz) significantly reduces iteration count versus the scaled diagonal preconditioner.

The o-Schwarz preconditioner is stored as 6N2
e small dense matrices M ∈ R

N2
P×N2

P . The

matrix M is explicitly inverted at initialization, and its inverse is subsequently applied

as a matrix-vector multiply. The o-Schwarz preconditioner, unlike the scaled diago-

nal preconditioner, is expensive to apply. Unfortunately, the o-Schwarz preconditioner

requires a nonsymmetric solver, which makes its use incompatible with the mCG solver.

While the implementation of a multishifted nonsymmetric solver in HOMME is

beyond the scope of this thesis, it is possible to compare the data movement between the

CG and mCG algorithms. This evaluation provides useful lessons about the potential

advantage of a multishifted nonsymmetric solver and demonstrates how SLAMM is used

to improve an implementation’s memory efficiency. Additionally, we apply SLAMM to

evaluate the impact of several nonsymmetric solvers on data movement in HOMME.

In Section 7.3.1, we examine how SLAMM is used to improve the implementation of

the mCG algorithm. In Section 7.3.2 we compare the execution time of HOMME using

both the mCG and CG algorithms. Finally, in Section 7.3.3, we use SLAMM to predict



www.manaraa.com

107

the data movement for several nonsymmetric solvers using an o-Schwarz preconditioner

versus the existing CG solver and preconditioner for a fixed number of iterations.

7.3.1 Reducing Data Movement in the mCG Algorithm

We next demonstrate how SLAMM is used to improve the implementation of

the mCG algorithm in HOMME. We examine the memory efficiency of three imple-

mentations of the mCG algorithm: the initial mCG implementation (mCG-v1), an

intermediate version with loop reordering (mCG-v2), and the final version (mCG-v3).

We configure HOMME at a resolution Ne = 3, Np = 6, and nlev = 20 and explicitly

output a matrix for use by Matlab. We concentrate on two sections of the mCG algo-

rithm. The Precon section (line 7) of Figure 3.3, where the preconditioner is applied,

and the Core section (lines 5 to 7 and 8 to 15) in Figure 3.3. We ignore the matrix-free

matrix-vector multiply in line 4 of Figure 3.3 for which we do not have a Matlab analog.

To simulate the impact of the o-Schwarz preconditioner on the memory hierarchy,

we apply the scaled diagonal preconditioner as a dense matrix-vector multiply. In Table

7.1, we provide the predicted values WSLP and the measured values WSLM for the

different implementations of the mCG algorithm for both the Precon and Core sections.

We examine the Precon section first followed by the Core section.

Table 7.1: Predicted versus measured MbytesL1 for three different versions of the mCG
algorithm in HOMME for 10 iterations for Ne = 3, Np = 6, and nlev = 20 on Pwr4.
Values for WSLP and WSLM are in Mbytes.

WSLM

Code Section WSLP mCG-v1 mCG-v2 mCG-v3

Precon 15.02 243.8 23.6 12.3
Core 50.51 60.8 60.8 39.5

To facilitate the examination of data movement in the Precon section, we provide

a listing of the Precon section of HOMME in Figure 7.4. The variable k is the level index

and ie is the element index. Table 7.1 indicates that there is a rather large discrepancy



www.manaraa.com

108

between the predicted (15.0) and measured (243.8) value of MbtyesL1 for the mCG-v1

implementation. The reason for the discrepancy is clear if we examine the Precon code

for the mCG-v1 implementation in Figure 7.4. While we reuse the same preconditioner

for each level, as indicated by the cg%state(ie)%M variable, the ordering of the loops

for the mCG-v1 code prevent cache reuse. The preconditioner for a particular element

is flushed from the cache before it can be used again because k is not the inner loop.

The simple fix, seen in the mCG-v2 version of the loop in Figure 7.4, reverses the k

and ie loops. The index reversal result in cache reuse for the preconditioner, and the

WSLM for the mCG-v2 implementation drops to 23.6 Mbytes.

While significantly reduced, the mCG-v2 value of 23.6 is still higher than the

predicted value of 15.0. The second fix for the Precon section involves removing the use

of array syntax from the subroutine call to ApplyPrecon. This change removes an input

argument copy that some F90 compilers generate if the form of the array declarations is

not matched on each side of the subroutine interface. With the spurious copies removed,

WSLM for mCG-v3 drops to 12.3 Mbytes, which is lower than the predicted value of

15.0. The discrepancy is not a failure of SLAMM, but rather a mismatch between

the implementation of the preconditioner in the Matlab test code and HOMME. In

Matlab, the preconditioner is implemented as a general sparse matrix that includes the

extra storage associated with indirect addressing, while the preconditioner in HOMME

is implemented as an array of structures. If we calculate WSLP based on the data

structure configuration used in HOMME, the predicted value 11.4 Mbytes agrees to

within 8% of the measured value. We did not encounter discrepancies between the

form of the data structures in Chapter 6 because the PETSc AIJ sparse matrix storage

format is similar in size to the Matlab data structures. Errors in the predictions due

to differences in data structures are unavoidable. However, the discrepancy in data

structures did not prevent the identification of both serious and subtle performance

problems with the Precon section of the mCG algorithm.



www.manaraa.com

109

We next examine the impact of the Core section of the mCG algorithm on the

memory hierarchy. Because of the large discrepancy between the predicted and mea-

sured for the Precon in mCG-v1 of the mCG algorithm, we ignore the discrepancy for

the Core section until the creation of the mCG-v3 implementation. For the mCG-v3

implementation, we reversed the order of the two inner loops for all the vector updates

in the Core section. The loop reversal matches the FORTRAN array storage order.

The WSLM for the mCG-v3 implementation of the Core section drops to 39.5 Mbytes,

which is lower than the predicted value of 50.5 Mbytes. This discrepancy is caused by

the interaction between a particular design choice of the SLAMM language processor

and the implementation characteristics of the mCG algorithm in HOMME. Note that

vector updates for x̃σ
j+1 and p̃σ

j+1 in lines 14 and 15 of Figure 3.3 both require the vec-

tor p̃σ
j . The mCG-v3 implementations of both updates are merged into a single loop,

which allows cache reuse for the vector p̃σ
j . However, recall from Section 5.8.2 that the

SLAMM language processor only accounts for cache reuse within a single statement.

Because the Matlab version of the mCG algorithm contains two separate lines, SLAMM

does not identify the cache reuse and as a result overestimates MbytesL1. Reuse be-

tween different statements is not an issue in Chapter 6 because of the modular design

of PETSc. It is possible to address cache reuse between multiple statements through

an extension to the SLAMM directives. The extension would allow the user to indicate

a group of statements where cache reuse is likely.

In this case, the failure of SLAMM to recognize cache reuse between statements

did not prevent the successful use of SLAMM to identify performance problems in the

mCG solver in HOMME. We next examine if the mCG algorithms provide a reduction

in execution time for HOMME versus the CG algorithm.



www.manaraa.com

110

!===================

! SCG V1

!===================

do k=1,nlev

if(.not. cg%converged(k)) then

do ie=1,nelem

...

call ApplyPrecon(cg%state(ie)%r(:,k), &

cg%state(ie)%z(:,k), &

cg%state(ie)%M,npsq)

enddo

endif

enddo

!===================

! SCG V2

!===================

do ie=1,nelem

do k=1,nlev

if(.not. cg%converged(k)) then

call ApplyPrecon(cg%state(ie)%r(:,k), &

cg%state(ie)%z(:,k), &

cg%state(ie)%M,npsq)

endif

enddo

enddo

!===================

! SCG V3

!===================

do ie=1,nelem

do k=1,nlev

if(.not. cg%converged(k)) then

call ApplyPrecon(cg%state(ie)%r(1,k), &

cg%state(ie)%z(1,k), &

cg%state(ie)%M,npsq)

endif

enddo

enddo

Figure 7.4: The Precon section of the multishifted conjugate gradient in HOMME.



www.manaraa.com

111

7.3.2 Impact of the mCG Algorithm on Execution Time

We next compare the data movement and execution time of HOMME for both

the CG and mCG algorithms. To provide a fair comparison, we apply any applicable

code changes identified by SLAMM during the optimization of the mCG solver to the

CG solver. As in the previous section, we apply the scaled diagonal preconditioner as a

dense matrix-vector multiply. In Table 7.2, we provide the measured working set load

size (WSLM ), floating-point operator count (FlopsM ), and execution time (TM ) for 10

iterations of the CG and mCG solvers in HOMME at the Ne = 5, Np = 8, nlev = 20

resolution on the Pwr4 compute platform. The solver is broken into the previously

discussed Precon and Core sections and the Helm and Solution sections. The Helm

section is where the Helmholtz operator is applied and the Solution section is line 17

of Figure 3.3, where true solution is calculated.

Table 7.2: Measured MbytesL1 (WSLM ) in Mbytes and FlopsM in Mflops for 10 iter-
ations of CG and mCG algorithms at the Ne = 5, Np = 8, and nlev = 20 resolution on
Pwr4.

Solver Reduction
CG mCG mCG vs. CG

WSLM F lopsM TM WSLM F lopsM TM WSLM F lopsM TM

Precon 1170 250 628 561 249 200 52% 0% 68%
Core 126 35 86 196 40 82 -55% -17% 5%
Helm 780 276 290 955 527 431 -22% -91% -49%
Solution 85 26 25

Total 2077 561 1004 1798 816 738 14% -50% 26%

As expected, column 8 of table 7.2 indicates that the mCG solver reduces data

movement versus the CG solver by 52% for the Precon section. Unfortunately, the

reduction in data movement for the Precon section is matched by an increase in data

movement for both the Core and Helm sections of the code. As a result, the total

reduction in data movement for the mCG solver versus the CG solver is 14%. Further,

the addition of right preconditioning increases the required floating-point operations by

50% for the mCG algorithm. Despite the significant increase in required floating-point



www.manaraa.com

112

operations, the mCG algorithm has an execution time that is 26% lower than the CG

algorithm. The values in Table 7.2 represent an upper bound on the advantage of the

mCG algorithm versus the CG algorithm in HOMME. In practice, the advantage of the

mCG algorithm is diluted because not all vertical levels require the same number of

iterations.

In Table 7.3, we provide the average execution time per timestep for the first day

of the PST test problem for HOMME on the Pwr4 compute platform. The time in the

solver is broken into the previously discussed Precon, Core, Helm, and Solution sections.

We also provide the time to update the governing equations Advance and the average

iteration count for each solver. The value itersmax is the maximum number of iterations

required for any level, while the value iterstotal is the total number of iterations required

for all levels. The average number of iterations per level is iteravg = itertotal/nlev.

Table 7.3 indicates that in practice, the execution time for the solver component

of HOMME for the mCG algorithm is 15% less than for the CG algorithm. The reason

the mCG solver does not achieve the 26% reduction in execution time is due to the

particular number of iterations required by each level. Because the average number

of iterations required for each level is approximately three, only few levels require the

maximum number of iterations to converge. Because HOMME does not apply the

preconditioner to those levels that have converged, the advantage of the mCG algorithm

is only significant for the first three iterations. For the small number of remaining levels,

the potential reduction in data movement for the mCG algorithm in the Precon section

is reduced.

Our experience evaluating the CG and mCG algorithm provides several lessons.

First, while the mCG algorithm reduces the required data movement, the use of right

preconditioning increases both floating-point and memory access costs of the matrix-

vector multiply for matrix-free implementations. Second, multishifted algorithms are

most effective when all levels converge in a similar number of iterations. The comparison



www.manaraa.com

113

Table 7.3: Average execution time per timestep in µseconds for 120 timesteps for
HOMME at Ne = 5, Np = 8, and nlev = 20 on Pwr4.

Solver Reduction
CG mCG mCG vs. CG

Solver: 419.1 355.6 15%
Precon 220.6 89.2 59.6%
Core 29.9 27.2 9.0%
Helm 168.6 216.5 -28.4%
Solution 22.7

Advance: 571.4 559.3 2.1%

Total: 990.5 914.9 7.6%

itersmax 11.96 11.63
iterstotal 67.80 64.19
itersavg 3.39 3.21

of the CG and mCG algorithms provides an unambiguous demonstration of the critical

importance of memory access costs in the time to solution of an iterative algorithm

7.3.3 Nonsymmetric Solvers in HOMME

We next examine how SLAMM is used to evaluate modifications to the HOMME

solver. We predict data movement for a fixed number of iterations for four different

Krylov and preconditioner combinations. We apply SLAMM to four Matlab codes. The

code CgHom, written by the author, is the merged inner-product Conjugate Gradient

algorithm provided in Figure 3.2. The CgsNL code is the Conjugate Gradient Squared

[98] algorithm from the templates directory of Netlib. The BicgstabNL code is the

Bi-Conjugate Gradient algorithm [110] from the templates directory of Netlib. The

GmresNL code is the same GMRES algorithm used in Chapter 6 from the templates

directory of Netlib. Because we are interested in data movement and not the numerical

impact of the various preconditioners, we use a scaled diagonal preconditioner for each

Matlab code. For the CgHom code, we apply the preconditioner as the multiplication of

two vectors. For the remaining codes, the preconditioner is applied as a dense matrix-

vector multiply.

We use the explicitly output matrix from HOMME described in Section 7.3.1 as



www.manaraa.com

114

input for the four Matlab codes. We provide the working set load size (WSL) for both

the Precon, Helm, and Core sections in Table 7.4 for ten iterations. The Precon section

refers to application of the preconditioner; the Helm section refers to the application of

the Helmholtz operator; and the Core section refers to all other necessary calculations.

Note that while the WSL values for the Precon and Core sections are predicted using the

SLAMM language processor, the WSL value for Helm is an approximation based on the

measured value of the existing CG implementation. Table 7.4 provides the total value

of WSL along with a ratio of the nonsymmetric algorithm WSL divided by working

set size for the existing CG algorithm (WSLCG). The ratio of 3.19 for the CgsNL code

indicates that CGS requires 3.19 times the data movement of the CG implementation

per iteration. The WSL/WSLCG ratio also indicates that the CGS with o-Schwarz

preconditioner must reduce iteration count by a factor greater than 3.19 to have greater

memory efficiency than the existing CG solver.

Table 7.4: Predicted MbytesL1 for the several Krylov algorithm and preconditioner
combinations in HOMME for 10 iteration at resolution Ne = 3, Np = 6, and nlev = 20.

WSL
Code CgHom CgsNL BicgstabNL GmresNL

Algorithm CG CGS BiCGStab GMRES(10)
Precon type Diag MxV MxV MxV

Precon 6.6 375.2 375.2 203
Helm 188.7 377.5 377.5 188.7
Core 54.8 46.0 58.4 114.6

Total 250.2 798.7 811.1 505.3
Ratio: WSL/WSLCG 1.00 3.19 3.24 2.02



www.manaraa.com

Chapter 8

Conclusions

Because of advances in computer architecture, the cost of iterative solvers is no

longer dominated by floating-point costs. Thus to reduce time to solution, we must

focus not only on the floating-point costs but on the memory access costs as well.

We have shown that the memory efficiency of iterative algorithms can be improved

by analyzing the impact on the memory hierarchy during the design process using

memory analysis. An a priori memory analysis, which determines the amount of data

that must be loaded from the memory hierarchy to the L1 cache, is performed using

either manual or automated techniques. We demonstrated in Chapter 4 that an manual

memory analysis improves both the design and implementation of an iterative algorithm.

However, manual memory analysis is a laborious, error-prone process that is too complex

to perform on a regular basis. We need a simpler memory analysis procedure.

To simplify the memory analysis procedure, we develop the Sparse Linear Algebra

Memory Model (SLAMM) language processor described in Chapter 5. The SLAMM

language processor combines the static analysis of an input Matlab code and dynamic

execution by the Matlab interpreter to automate memory analysis. The static analysis

of the SLAMM language processor determines the number of occurrences of identifiers

in the input code. Because not all occurrences of identifiers indicate a need to load data

from the memory hierarchy, we apply a series of corrections to the base identifier counts.

The corrections represent a translation from the literal analysis of the input Matlab code



www.manaraa.com

116

to an estimate of how the code would be efficiently implemented in a compiled language.

In Chapter 6, we demonstrate that the SLAMM language processor predicts the

amount of data loaded from the memory hierarchy to the L1 cache (MbytesL1) to within

20% error for nearly every benchmark on three different compute platforms. A predic-

tion accuracy within 20% error is consistent with related efforts to model the impact of

algorithms on the memory hierarchy using source code analysis [19, 39, 111]. The accu-

rate prediction of MbytesL1 for the matrix-matrix multiply (MxM) benchmark is more

difficult. The MxM benchmark is difficult to predict because the measured MbytesL1

is highly dependent on both compute platform and the underlying implementation of

the benchmark. We also examine the ability of SLAMM to accurately predict execution

time for a subset of the benchmarks. We demonstrate that under controlled conditions,

we are able to accurately predict an upper bound on execution time correctly for 92%

of the benchmark, input set, and compute platform combinations. Our accuracy rate

drops to 61% for our lower bound on execution time.

We next provide a case study of how SLAMM is used to evaluate the memory

efficiency of different solvers within the context of the Higher Order Method Model

Environment (HOMME). We examine the memory efficiency of the HOMME solver

based on a multishifted Conjugate Gradient (mCG) algorithm. The mCG algorithm,

which is developed for this work, provides the ability to use a single preconditioner for all

vertical levels. Because HOMME currently supports only an inexpensive diagonal scaled

preconditioner, the mCG algorithm offers no significant reduction in data movement at

this time.

However, recent developments with an optimized Schwarz preconditioner sug-

gest that a multishifted Krylov algorithm may be useful in the future. We therefore

examine the differences in memory efficiency of the CG and mCG algorithms as an

example of the potential advantage of a multishifted algorithm. We demonstrate that

the prediction accuracy provided by SLAMM is sufficient to easily identify excessive



www.manaraa.com

117

data movement in algorithm implementations. We discover that the use of the right

preconditioning, which is necessary to maintain the shifted structure of the Helmholtz

problem, significantly increases the floating-point count for the mCG algorithm versus

the CG algorithm. Despite the increase in the floating-point count, the mCG algorithm

reduces data movement and time to solution versus the CG algorithm. The decreased

time to solution for the mCG-based HOMME is an unambiguous demonstration of the

importance of memory access costs to the time to solution of iterative algorithms.

Finally, we simulate the required data movement for an existing CG solver with

the scaled diagonal preconditioner with several nonsymmetric algorithms using an op-

timized Schwarz preconditioner. We determine that a nonsymmetric algorithm with an

optimized Schwarz preconditioner must reduce iteration count by more than a factor

of two to three to be a viable alternative to the existing CG algorithm with a scaled

diagonal preconditioner.

8.1 Future Work

Our results indicate that SLAMM has the potential to be a useful predictive tool

for the numerical analysis community. It allows rapid evaluation of the performance

impact of different solver design choices. During the course of this research, we used

three different techniques to evaluate the impact of design choices on data movement.

The first technique, which involves implementing the algorithm in a compiled language

and evaluating the memory efficiency of the implementation, requires approximately

two to three months of effort. The second technique, manual memory analysis, requires

as long as several days of work. The third technique, automated memory analysis with

the SLAMM language processor, requires 20 minutes. Automated memory analysis

therefore significantly simplifies the development of memory-efficient iterative solvers.

Further, SLAMM provides the ability to improve the memory efficiency of an existing

implementation.



www.manaraa.com

118

Our results suggest several avenues for further work. The first involves the con-

tinued development and improvement of the SLAMM language processor. The second

involves the application of SLAMM to improve solvers in other contexts. We discuss

the possible improvements to the SLAMM language processor first.

Improvements to the SLAMM language processor are classified into two types:

those that increase robustness and those that address more fundamental issues. We

begin with improvements to increase robustness. During the development of SLAMM,

a decision was made not to initially support Matlab structures. This decision was based

on how often structures appeared in a collection of Matlab codes downloaded from the

Netlib repository. The addition of structure support would increase the robustness of

SLAMM and requires only a slight reworking of the form of the abstract syntax tree.

A minor restructuring of the abstract syntax tree would also allow the proper iden-

tification of cache reuse for expressions using array notation. An improved treatment

of array notation has the potential to reduce the number of copies of array subsections

into temporary variables in the SLAMM generated Matlab. The reduction in array

subsection copies could reduce the execution time overhead for the SLAMM generated

Matlab.

The SLAMM language processor also requires work to address more fundamental

issues that were discovered while analyzing the accuracy of the predictions in Chapters

6 and 7. As described in Section 7.3.2, SLAMM’s inability to recognize cache reuse

across multiple statements leads to an overestimation of the required data movement

under certain circumstances. This deficiency is easily remedied through the addition

of an optional keyword for the SLAMM Start directive. This extension would alert

SLAMM to cache reuse within the indicated body. An incompatability between the

duplicate and special operation corrections also impairs SLAMM’s ability to recognize

cache reuse. The special operation correction, which performs the same code transfor-

mations necessary for profiled function call support described in Section 5.8.4, prevents



www.manaraa.com

119

the proper identification of duplicate identifiers. We believe that while it is possible

to support both forms of corrections simultaneous, it requires additional syntax tree

computations. Finally, we believe it is possible to use ATLAS to improve the estimate

for data movement for dense matrix-matrix multiplication.

The results for the execution time prediction also require further investigation.

Our ability to predict execution time under controlled conditions provides neither confi-

dence in the results nor proof of failure. Further, it is unclear if the accurate prediction

of execution time for complete applications for which the location of the operands in

the memory hierarchy is unknown is possible. We suspect that prediction of execu-

tion time for a complete application requires an accurate prediction of data movement

through other components of the memory hierarchy. Finally, as our results for the

mCG algorithm in Section 7.3.2 indicate, the cost of floating-point calculations can not

be completely ignored.

While the mCG solver offers a modest reduction in execution time versus the CG

solver in HOMME, it does demonstrate the importance of memory access costs on the

time to solution. Therefore, the use of multishifted algorithms to reduce time to solution

should be investigated further. In particular, the potential use of a nonsymmetric solver

in HOMME suggests the need to examine a multishifted nonsymmetric solver. The

multishifted Bi-CGSTAB of Frommer [46] appears a likely candidate for evaluation.

Finally, we would like to use SLAMM to reduce execution time for applications

other than HOMME. During the development and performance tuning of the mCG

algorithm in HOMME, we observed that SLAMM allows for a rapid identification of

sections of code with excessive data movement. We believe this is a property of SLAMM

and not due to the familiarity of the author with the HOMME application. However,

we would like to verify the ability of SLAMM to rapidly identify performance problems

in other applications.



www.manaraa.com

Bibliography

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high performance algorithm
using pre-processing for the sparse matrix-vector multiplication. In Proceedings
of Supercomputing ’92, November 1992.

[2] R. C. Agarwal, F. G. Gustavson, and M. Zubair. Improving performance of linear
algebra algorithms for dense matrices using algorithmic prefetch. IBM Journal of
Research and Development, 38(3):265–275, 1994.

[3] G. Almási, C. Cascaval, and D. Padua. Calculating stack distances efficiently. In
Proc. of the 2002 workshop on Memory System Performance, pages 37–43, 2003.

[4] W. K. Anderson and D. L. Bonhaus. An implicit upwind algorithm for computing
turbulent flows on unstructured grids. Computers and Fluids, 23:1–21, 1994.

[5] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith.
Achieving high sustained performance in an unstructured mesh CFD application.
In Proceedings of Supercomputing ’99, 1999. Also published as Mathematics
and Computer Science Division, Argonne National Laboratory, Technical Report
ANL/MCS-P776-0899, August 1999.

[6] Stefan Andersson, Ron Bell, John Hague, Holger Holthoff, Peter Mayes, Jun
Nakano, Danny Shieh, and Jim Tuccillo. RS/6000 Scientific and Technical
Computing: POWER3 Introduction and Tuning Guide. IBM International Tech-
nical Support Organization, October 1998. http://www.redbooks.ibm.com.

[7] A. Baker, 2005. Personal Communication.

[8] A. Baker, J. Dennis, and E. R. Jessup. Toward memory-efficient linear solvers.
In J.M.L.M. Palma, J. Dongarra, V. Hernandez, and A. A. Sousa, editors,
VECPAR ’2002, Fifth International Conference on High Performance Computing
for Computational Science: Selected Papers and Invited Talks, volume 2565 of
Lecture Notes in Computer Science, pages 315–327. Springer, Berlin, 2003.

[9] A. H. Baker, J. M. Dennis, and E. R. Jessup. An efficient block variant of GM-
RES. Technical Report CU-CS-957-03, University of Colorado, Department of
Computer Science, July 2003. To appear in SIAM Journal of Scientific Comput-
ing.



www.manaraa.com

121

[10] A. H. Baker, E. R. Jessup, and T. Manteuffel. A technique for accelerating the
convergence of restarted GMRES. To appear SIAMM Journal on Matrix Analysis
and Applications, 2005. Also available as University of Colorado, Deparment of
Computer Science, Technical Report CU-CS-945-03.

[11] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matt
Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
Users Manual. Technical Report ANL-95/11 - Revision 2.1.5, Mathemat-
ics and Computer Science Division, Argonne National Laboratory, 2003.
http://www.mcs.anl.gov/petsc.

[12] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar,
P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Peiriyacheri, M. Walken, and
D. Zaretsky. A Matlab compiler for distributed, heterogeneous, reconfigurable
computing systems. In Int. Symp. on FPGA Custom Computing Machines
(FCCM-2000), Napa Valley, Ca, April 2000.

[13] S. T. Barnard, A. Pothen, and H. D. Simon. A spectral algorithm for enve-
lope reduction of sparse matrices. Numerical Linear Algebra with Applications,
2(4):317–334, 1995.

[14] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM,
Philadelphia,PA, 1994.

[15] Basic Linear Algebra Subprograms Technical (BLAST) Forum: Doc-
ument for the basic linear algebra subprograms (BLAS) standard.
http://www.netlib.org/blast/blast-forum, 2001.

[16] S. Behling, R. Bell, P. Farrell, H. Holthoff, F. O’Connell, and W. Weir. The
POWER4 Processor Introduction and Tuning Guide. IBM Redbooks, November
2001. http://www.redbooks.ibm.com.

[17] D. A. Burgess and M. B. Giles. Renumbering unstructured grids to improve the
performance of codes on hierarchical memory machines. Technical Report 95/06,
Numerical Analysis Group, Oxford University Computing Laboratory, May 1995.

[18] Steve Carr and Ken Kennedy. Blocking linear algebra codes for memory hierar-
chies. In Proceedings of the Fourth SIAM Conference on Parallel Processing for
Scientific Computing, pages 400–405. SIAM, 1989.

[19] C. Cascaval, L. DeRose, D. Padua, and D. Reed. Compile-time based performance
prediction. In Proc. LCPC Workshop, pages 365–379, 1999.

[20] C. Cascaval and D. Padua. Estimating cache misses and locality using stack dis-
tances. In Proc. of the 17th annual International Conference on Supercomputing,
pages 150–159, 2003.

[21] I. Chihaia and T. Gross. Effectiveness of simple memory models for performance
prediction. In Proc. ISPASS, pages 98–105. IEEE, March 2004.



www.manaraa.com

122

[22] A. T. Chronopoulos and C. W. Gear. S-step iterative methods for symmetric
linear systems. Journal of Computational and Applied Mathematics, 25:153–168,
1989.

[23] Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization: Ref-
erence Manual. Technical Report 24896604, Intel Corporation, 2001.

[24] Intel Corporation. Intel Xeon Processor with 512 KB L2 cache at 1.80 Ghz to 3
Ghz DataSheet. Technical Report 29864206, Intel Corporation, 2003.

[25] E. H. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matri-
ces. In Proceedings 24th Nat. Conf. Assoc. Comp. Mach., pages 157–172. ACM
Publications, 1969.

[26] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and
implementation of a parallel unstructured Euler solver using software primitives.
AIAA Journal, 32(3):489–496, 1994.

[27] T. Davis. University of Florida sparse matrix collection,
http://www.cise.ufl.edu/research/sparse/matrices, 2003.

[28] E. F. D’Azevedo, V. L. Eijkhout, and C. H. Romaine. Conjugate gradient algo-
rithms with reduced synchronization overhead on distributed memory multipro-
cessors. Technical Report 56, Lapack Working Note, August 2002.

[29] L. DeRose and D. Padua. A Matlab to Fortran 90 translator and its effectiveness.
In Proceedings of the 10th ACM International Conference on Supercomputing -
ISC’96, pages 309–316, Philadelphia, PA, May 1996.

[30] L. DeRose and D. Padua. Techniques for the translation of Matlab programs
into Fortran 90. ACM Transactions on Programming Languages and Systems,
21(2):286–323, March 1999.

[31] J. Dongarra, J. DuCroz, S. Hammarling, and I. Duff. Algorithm 679: A set of
level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 16:18–28,
1990.

[32] J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. Algorithm 656: An ex-
tended set of Fortran Basic Linear Algebra Subprograms: Model implementation
and test programs. ACM Trans. Math. Software, 14:18–32, 1988.

[33] J. Dongarra, J. DuCroz, S. Hammarling, and R. J. Hanson. An extended set of
Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 14:1–
17, 1988.

[34] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’
Guide. SIAM Publications, 1979.

[35] A. A. Dubrulle. Retooling the method of block conjugate gradients. Electronic
Trans. on Num. Anal., 12, 2001.



www.manaraa.com

123

[36] I. S. Duff, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans.
Math. Software, 15:1–14, 1989.

[37] D. R. Durran. Numerical Methods for Wave Equations in Geophysical Fluid
Dynamics. Springer-Verlag, 1999.

[38] M. Engeli, T. Ginsburg, H. Rutishauser, and E. Stiefel. Refined Iterative Methods
for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary
Value Problems. Birkhäuser, Basel/Stuttgart, 1959.

[39] T. Fahringer. Estimating cache performance for sequential and data parallel pro-
grams. Technical Report TR 97-9, Institute for Software Technology and Parallel
Systems, Univ. of Vienna, Vienna, Austria, October 1997.

[40] C. Fang, S. Carr, S. Önder, and Z. Wang. Reuse-distance-based miss-rate predic-
tion on a per instruction basis. In Proc. of the 2002 workshop on Memory System
Performance, pages 60–68, 2004.

[41] Peter Fiebach, Roland Freund, and Andreas Frommer. Variants of the block-
QMR method and applications in quantum chromodynamics. In Proceedings of
the IMACS World Congress, August 1997.

[42] M. Field. Optimizing a parallel conjugate gradient solver. SIAM J. Sci. Stat.
Computing, 19:27–37, 1998.

[43] B. B. Fraguela, R. Doallo, J. Tourino, and E. L. Zapata. A compiler tool to
predict memory hierarchy performance of scientific codes. Parallel Computing,
30:225–248, 2004.

[44] R. W. Freund. Solution of shifted linear systems by quasi-minimal residual itera-
tions. Numerical Linear ALgebra, pages 101–121, 1993.

[45] Roland W. Freund and Manish Malhotra. The block-QMR method for the
solution of multiple radiation and scattering problems in structural acoustics.
http://www.bell-labs.com/project/BLQMR/, 2003.

[46] A. Frommer. BiCGStab(l) for families of shifted linear systems. Computing,
70(2):87–109, 2003. Preprint BUGHW-SC 02/04.

[47] Kyle Gallivan, William Jalby, Ulrike Meier, and Ahmed H. Sameh. Impact of
hierarchical memory systems on linear algebra algorithm design. International
Journal of Supercomputer Applications, 2(1):12–48, 1988.

[48] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for program transfor-
mations with caches of arbitrary associativity. In Proc. ASPLOS, pages 228–239,
Oct. 1998.

[49] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM J. Num. Anal., 13:236–249, 1976.

[50] Robert W. Gray, Vincent P. Heuring, Steven P. Levi, Anthony M. Sloane, and
William M. Waite. Eli: A complete, flexible compiler construction system.
Communications of the ACM, 35(2):121–131, February 1992.



www.manaraa.com

124

[51] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Toward realistic
performance bounds for implicit CFD codes. In A. Ecer et al., editor, Proceedings
of Parallel CFD’99, pages 233–240. Elsevier, 1999.

[52] William D. Gropp, Dinesh K. Kaushik, David E. Keyes, and Barry F. Smith.
High-performance parallel implicit CFD. Parallel Computing, 27:337–362, 2001.

[53] J. Hennessey and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2nd edition, 1996.

[54] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Research Nat. Bur. Standards, 49:409–436, 1952.

[55] Eun-Jin Im and K. Yelick. Optimizing sparse matrix vector multiplication on
SMPs. In Ninth SIAM Conference on Parallel Processing for Scientific Computing,
1999.

[56] Eun-Jin Im and Katherine Yelick. Model-based memory hierarchy optimizations
for sparse matrices. In Workshop on Profile and Feedback-Directed Compilation,
Paris, France, 1998.

[57] The MathWorks Inc. MCC. http://www.mathworks.com/products/compiler,
2003.

[58] Beat Jegerlehner. Krylov space solvers for shifted linear systems. Technical Report
IUHET-353, Indiana University, Department of Physics, December 1996.

[59] P. G. Joisha and P. Banerjee. MAGICA: A software tool for inferring types in
Matlab. Technical Report CPDC-TR-2002-10-004, Department of Electrical and
Computer Engineering, Northwestern University, October 2002.

[60] P. G. Joisha and P. Banerjee. Static array storage optimization in Matlab. In ACM
SIGPLAN Conference on Programming Language Design and Implementation,
San Diego, June 2003.

[61] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 microproces-
sor architecture. In Proceedings of the 1998 IEEE International Conference on
Computer Design, pages 90–95, October 1998.

[62] V. Kotlyar, K. Pingali, and P. Stodghill. Compiling parallel sparse code for user-
defined data structures. In SIAM Conference on Parallel Processing for Scientific
Computing, volume 8, 1997. http://www.cs.cornell.edu/Info/Projects/Bernaulli.

[63] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache per-
formance and optimizations of blocked algorithms. In Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages
and Operating Systems, 1991.

[64] J. R. Levine, T. Mason, and D. Brown. Lex & Yacc. O’Reilly & Associates, 2nd
edition, 1992.



www.manaraa.com

125

[65] J. W. H. Liu and A. H. Sherman. Comparative analysis of the Cuthill-McKee
and the reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J.
Num. Anal., 13:198–213, 1976.

[66] R. Loft, 2001. Personal Communication.

[67] Richard D. Loft, Stephen J. Thomas, and John M. Dennis. Terascale spectralele-
ment dynamical core for atmospheric general circulation models. In Proceedings
of SC2001, 2001.

[68] G. Marin and J. Mellor-Crummey. Cross-architecture performance predictions
for scientific applications using parameterized models. ACM SIGMETRICS
Performance Evaluation Review, 32:2–13, June 2004.

[69] MATLAB: The language of technical computing. The MathWorks Inc.
http://www.mathworks.com.

[70] J. D. McCalpin. Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer
Architecture Newsletter, December 1995. http://www.cs.virginia.edu/stream.

[71] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high performance
computers. http://www.cs.virginia.edu/stream, 1995.

[72] S. McKee and W. Wulf. Access order and memory-conscious cache utilization. In
First Symposium on High Performance Computer Architecture (HPCA1), January
1995.

[73] J. Michalakes, S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Ska-
marock. Development of a next generation regional weather research and fore-
cast model. In Walter Zwieflhofer and Norbert Kreitz, editors, Developments in
Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High
Performance Computing in Meteorology, pages 269–276. World Scientific, 2001.

[74] Sun Microsystems. The Ultra2 architecture: Technical white paper, 2005.
http://pennsun.essc.psu.edu/customerweb/WhitePapers/.

[75] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine array references. In
Proceedings of Parallel Architectures and Compilation Techniques ’99, October
1999.

[76] S. Naffziger and G. Hammond. The implementation of the next generation 64b
Itanium microprocessor. In Proceedings of the IEEE International Solid-State
Circuits Conference, volume 2, pages 276–504, 2002.

[77] National Institute of Standards and Technology, Mathematical and Computa-
tional Sciences Division. Matrix Market. http://math.nist.gov/MatrixMarket,
2002.

[78] Netlib Repository at UTK and ORNL. http://www.netlib.org, 2005.



www.manaraa.com

126

[79] Dianne P. O’Leary. The block conjugate gradient algorithm and related methods.
Linear Algebra and its Applications, 29:293–322, 1980.

[80] Dianne P. O’Leary. Parallel implementation of the block conjugate gradient algo-
rithm. Parallel Computing, 5:127–139, 1987.

[81] PAPI: Performance Application Programming Interface: User’s Guide.
http://icl.cs.utk.edu/papi, 2005.

[82] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yellick. A case for intelligent RAM. IEEE Micro, pages
34–44, March/April 1997.

[83] Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector
multiplication. In Proceedings of SC’99, 1999.

[84] T. Pittman and J. Peters. The Art of Compiler Design: Theory and Practice.
Prentice Hall, Englewood Cliffs, NJ, 1992.

[85] L. M. Polvani, R. K. Scott, and S. J. Thomas. Numerically converged solutions
of the global primitive equations for testing the dynamical core of atmospheric
GCMs. Monthly Weather Review, 132:2539–2552, 2004.

[86] M. J. Quinn, A. Malishevsky, N. Seelam, and Y Zhao. Preliminary results from
a parallel Matlab compiler. In Proceedings of the International Parallel and
Distributed Processing Symposium, Orlando, Florida, 1998.

[87] M. Rančić, R. J. Purser, and F. Messinger. A global shallow-water model using
an expanded spherical cube: Gnomic versus conformal coordinates. Q. J. R.
Meteorol. Sol., 122:959–982, 1996.

[88] J. K. Reid. On the method of conjugate gradients for the solution of large sparse
systems of linear equations., pages 231–254. Academic Press, 1971.

[89] C. Ronchi, R. Iacono, and P. S. Paolucci. The “cubed sphere”: A new method
for the solution of partial differential equations in spherical geometry. Journal of
Computational Physics, 124:93–114, 1996.

[90] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems.
Mathematics of Computation, 37(155):105–126, 1981.

[91] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company,
1996.

[92] Y. Saad and M. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 7:856–869, 1986.

[93] Robert Sadourny. Conservative finite-difference approximations of the primitive
equations on quasi-uniform spherical grids. Monthly Weather Review, 100(2):136–
144, 1972.



www.manaraa.com

127

[94] H. Simon and A. Yeremin. A new approach to construction of efficient itera-
tive schemes for massively parallel applications: variable block CG and BiCG
methods and variable block Arnoldi procedure. Parallel Processing for Scientific
Computing, pages 57–60, 1993.

[95] Horst D. Simon. The Lanczos algorithm for solving symmetric linear systems.
PhD thesis, University of California, Berkeley, April 1982.

[96] A. M. Sloane. An evaluation of an automatically generated compiler. ACM
Transactions on Programming Languages and Systems, 17:691–703, September
1995.

[97] P. K. Smolarkiewicz, V. Grubis̆ić, and L. G. Margolin. On forward-in-time dif-
ferencing for fluids: Stopping criteria for iterative solutions of anelastic pressure
equations. Mon. Wea. Rev., 125:647–654, 1997.

[98] P. Sonneveld. CGS, a fast Lanczos-type solverfor nonsymmetric linear systems.
SIAM Journal on Scientific and Statistical Computing, 10(1):36–52, 1989.

[99] A. St-Cyr, M. J. Gander, and S. J. Thomas. Optimized multiplicative, additive
and restricted additive Schwarz preconditioning, 2005. Submitted for publication
SIAM Journal on Scientific Computing.

[100] A. St-Cyr, M. J. Gander, and S. J. Thomas. Optimized restricted additive Schwarz
methods. In Lecture Notes in Computational Science and Engineering. Sprint
Verlag, 2005. http://cims.nyu.edu/dd16/proceeddings.html.

[101] Mark Taylor, Joseph Tribbia, and Mohamed Iskandarani. The spectral element
method for the shallow water equations on the sphere. Journal of Computational
Physics, 130:92–108, 1997.

[102] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on
caches. In Proceedings of Supercomputing 1992, 1992.

[103] S. J. Thomas, J. M. Dennis, H. M. Tufo, and P. F. Fischer. A Schwarz precondi-
tioner for the cubed-sphere. SIAM Journal of Scientific Computing, 25(2):442–453,
2003.

[104] S. J. Thomas and R. D. Loft. Parallel semi-implicit spectral element methods for
atmospheric general circulation models. SIAM Journal of Scientific Computing,
16, June 2001.

[105] S. J. Thomas and R. D. Loft. The NCAR spectral element climate dynamical
core: Semi-implicit eulerian formulation. SIAM Journal of Scientific Computing,
2005. To appear.

[106] S. Toledo. Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Research Development, 41(6):711–725, November
1997.



www.manaraa.com

128

[107] Sivan A. Toledo. Quantitative Performance Modeling of Scientific Computations
and Creating Locality in Numerical Algorithms. PhD thesis, Massachusetts Insti-
tute of Technology, 1995.

[108] H. M. Tufo and P. F. Fischer. Terascale spectral element algorithms and imple-
mentations. In Proceedings of SC’99, 1999.

[109] Jasper van den Eshof and Gerard L. G. Sleijpen. Accurate conjugate gradient
methods for shifted systems. Technical Report 1265, Universiteit Utrecht, 2003.

[110] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of non-symmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 12:631–644, 1992.

[111] A. J. C. van Gemund. Automatic cost estimation of data parallel programs.
Technical Report 1-68340-44, Faculty of Information Technology and Systems,
Delft University of Technology, Oct 2001.

[112] A. J. C. van Gemund. Symbolic performance modeling of parallel systems. IEEE
Transactions on Parallel and Distributed Systems, Feb. 2003.

[113] Spiros Vellas. Scalar Code Optimization I, 2005.
http://sc.tamu.edu/help/origins/sgi scalar r14k opt.pdf.

[114] Richard Vuduc, James W. Demmel, Katherine A. Yelick, Shoaib Kamil, Rajesh
Nishtala, and Benjamin Lee. Performance optimizations and bounds for sparse
matrix-vector multiply. In Proceedings of the IEEE/ACM SC2002 Conference,
2002.

[115] W. Waite, U. Kastens, and A. M. Sloane. Eli: Translator construction made easy.
http://eli-project.sourceforge.net/, 2005.

[116] R. C. Whalely, A. Petitet, and J. J. Dongarra. Automated empirical optimization
of software and the ATLAS project. Technical Report 141, Lapack Working Note,
September 2000.


